Wanxuan Yao | Climate change mitigation technologies | Best Researcher Award

Dr. Wanxuan Yao | Climate change mitigation technologies | Best Researcher Award

Researcher | GEOMAR Helmholtz Centre for Ocean Research Kiel | Germany

Dr. Ben Wanxuan Yao is an accomplished climate scientist specializing in biogeochemical modelling, carbon dioxide removal (CDR), and carbon capture and storage (CCS). His research integrates modelling, data analysis, and environmental assessment to evaluate the technical feasibility, effectiveness, and societal implications of carbon mitigation technologies. With extensive experience in developing CDR evaluation frameworks, he has advanced the global understanding of marine-based carbon removal and its integration within policy and sustainability contexts. He has led multidisciplinary research initiatives focused on site-specific CDR and CCS portfolio development, aligning scientific innovation with national and international climate goals. His work encompasses quantitative modelling of oceanic carbon and nutrient cycles, AI-based parameter calibration on high-performance computing systems, and holistic assessments of carbon sequestration techniques. His findings have been published in leading international journals, including Geophysical Research Letters, Earth’s Future, Environmental Research Letters, and Global Change Biology, providing critical insights into the environmental, economic, and ethical dimensions of marine carbon removal technologies. Beyond research, he has played a key role in facilitating collaboration between scientists, policymakers, and industry through workshops, think tanks, and conferences, strengthening the interface between science and decision-making in the field of climate solutions. His expertise in geospatial data analysis, system modelling, and sustainable innovation has positioned him as a valuable contributor to the evolving landscape of carbon management and environmental strategy. Dr. Yao’s academic excellence and research influence are reflected in his growing global recognition, with 67 citations, 8 publications, and an h-index of 5, underscoring his impactful contributions to the advancement of climate modelling and carbon removal science.

Featured Publications

1. Somes, C. J., Dale, A. W., Wallmann, K., Scholz, F., Yao, W., Oschlies, A., Muglia, J., & Achterberg, E. P. (2021). Constraining global marine iron sources and ligand‐mediated scavenging fluxes with GEOTRACES dissolved iron measurements in an ocean biogeochemical model. Global Biogeochemical Cycles, 35(8), e2021GB006948. Cited by: 30

2. Frenger, I., Landolfi, A., Kvale, K., Somes, C. J., Oschlies, A., Yao, W., & Koeve, W. (2024). Misconceptions of the marine biological carbon pump in a changing climate: Thinking outside the “export” box. Global Change Biology, 30(1), e17124. Cited by: 27

3. Yao, W., Kvale, K. F., Achterberg, E., Koeve, W., & Oschlies, A. (2019). Hierarchy of calibrated global models reveals improved distributions and fluxes of biogeochemical tracers in models with explicit representation of iron. Environmental Research Letters, 14(11), 114009. Cited by: 15

4. Kvale, K., Keller, D. P., Koeve, W., Meissner, K. J., Somes, C. J., Yao, W., & Oschlies, A. (2020). Explicit silicate cycling in the Kiel Marine Biogeochemistry Model, version 3 (KMBM3) embedded in the UVic ESCM version 2.9. Geoscientific Model Development Discussions, 1–46.Cited by: 10

5. Yao, W., Kvale, K. F., Koeve, W., Landolfi, A., Achterberg, E., Bertrand, E. M., & Oschlies, A. (2022). Simulated future trends in marine nitrogen fixation are sensitive to model iron implementation. Global Biogeochemical Cycles, 36(3), e2020GB006851. Cited by: 6

Dr. Wanxuan Yao’s work advances global climate solutions by integrating biogeochemical modelling with carbon removal science, enhancing the precision of Earth system projections and guiding sustainable carbon management strategies for policymakers and industry. His research bridges scientific innovation and environmental governance, driving impactful progress toward a low-carbon, resilient future.

Vivek Garg | Waste-to-Energy Conversion | Best Researcher Award

Dr. Vivek Garg | Waste-to-Energy Conversion | Best Researcher Award

Senior Lecturer and Applied Engineering Research Specialist at University of Greenwich | United Kingdom

Dr. Vivek Garg is an accomplished researcher and technical leader specializing in powder technology, bulk solids handling, mineral processing, and formulation science. Currently serving as a Senior Lecturer and Applied Engineering Research Specialist at the University of Greenwich, he leads interdisciplinary projects across the pharmaceutical, food, chemical, and environmental sectors. His expertise lies in bridging the gap between academic research and industrial application, delivering scalable solutions for formulation design, process optimization, and test method development. He has successfully secured competitive research funding and major consultancy projects, demonstrating his ability to attract resources and deliver measurable impact. His scholarly contributions include research publications in reputed international journals, patents in advanced systems and technologies, and book chapters addressing innovative engineering solutions. Widely recognized for his innovation and leadership, Dr. Garg actively contributes to scientific communities through invited talks, technical committees, and journal reviewing, while mentoring early-career researchers.

Professional Profile 

Google Scholar | Scopus Profile | ORCID Profile 

Education

Dr. Vivek Garg’s academic journey reflects a strong foundation in engineering and applied sciences. He earned his Ph.D. in Bulk Solids and Handling from the University of Greenwich, where his research focused on powder flow properties and their implications in industrial applications. Prior to that, he completed his Master’s degree in Thermal Engineering from Thapar University, where he expanded his expertise in advanced mechanical processes and energy systems. He began his academic pursuit with a Bachelor of Technology in Mechanical Engineering from IET Bhaddal, India, where he built the fundamental skills that would later shape his career as a researcher. Throughout his education, Dr. Garg has combined theoretical knowledge with practical experimentation, contributing to his expertise in formulation, process optimization, and sustainable solids handling. His academic achievements have been complemented by his strong engagement with industrial projects, enabling him to integrate academic learning with practical engineering challenges.

Experience

Dr. Vivek Garg brings over a decade of professional and research experience in powder technology, formulation science, and mineral processing. At the University of Greenwich, he has worked as a Senior Lecturer and Applied Engineering Research Specialist, where he has led industry-oriented R&D and consultancy projects, developed laboratory rigs for powder characterization, and guided students and researchers. His work spans diverse sectors including pharmaceuticals, food, chemicals, and environmental systems, focusing on developing innovative methods for powder flow measurement, material characterization, and process optimization. Earlier in his career, he contributed to engineering roles in leading industries such as Federal Mogul Goetze and Bhushan Power and Steel, where he provided solutions that improved efficiency and reduced operational costs. Through his consultancy and collaborative projects, he has partnered with global industries and academic institutions, successfully translating research outcomes into practical solutions. His leadership in project execution demonstrates his ability to deliver high-impact results.

Research Interest

Dr. Vivek Garg’s research interests lie in the study and advancement of powder technology and bulk solids handling, with applications across pharmaceutical, food, and chemical industries. He focuses on powder formulation and characterization, including flowability, compressibility, segregation, and caking, which are crucial factors in ensuring product quality and process efficiency. He also explores advanced topics such as air permeability, fluidization behavior, and the development of lab-to-full scale rigs for material characterization. In addition, his work in additive manufacturing, particularly 3D tablet printing, highlights his interest in combining pharmaceutical innovation with engineering design. He is equally committed to exploring sustainable solids handling, addressing industrial challenges in waste processing and renewable material applications. His approach integrates experimental methods, material science, and computational modeling to develop innovative solutions that bridge scientific research with industrial needs. By pursuing these areas, Dr. Garg aims to strengthen global research and innovation in material science and engineering.

Awards and Honors

Dr. Vivek Garg has been widely recognized for his contributions to engineering research and innovation through multiple prestigious awards. He has received distinctions for innovation in powder technology, materials handling, and applied research, demonstrating his ability to deliver high-impact solutions that bridge academia and industry. His recognition includes awards celebrating rising talent, newcomer contributions, and international excellence in young research, highlighting both his early promise and continued professional success. Beyond institutional awards, Dr. Garg has earned accolades from professional associations and industrial organizations, affirming the global relevance of his work. These honors reflect his ability to consistently push the boundaries of powder technology and applied engineering. His leadership in winning competitive research grants, along with contributions to interdisciplinary collaborations, further validates his achievements. Collectively, these recognitions underscore his growing influence in his field and affirm his position as a researcher of international distinction, committed to advancing science and innovation.

Research Skills

Dr. Vivek Garg has developed a strong portfolio of research skills that combine experimental expertise, analytical rigor, and project leadership. He is highly skilled in powder characterization techniques such as particle size analysis, powder flow testing, air permeability, and compressibility studies, supported by tools including DVS, SEM, ImageJ, and pycnometers. He has experience in developing bespoke laboratory rigs and smart test facilities that enable real-time monitoring of powder behavior, a key contribution to both academic research and industrial applications. In addition, his knowledge extends to design software such as SolidWorks and simulation approaches that integrate characterization techniques into virtual toolkits. He has also gained expertise in project management, having secured competitive funding, managed budgets, and led multi-disciplinary research teams. His ability to translate experimental insights into industrial solutions demonstrates both technical competence and applied innovation. These skills, combined with strong stakeholder engagement, make him a versatile and impactful researcher.

Publication Top Notes

Title: An investigation into the flowability of fine powders used in pharmaceutical industries
Authors: V. Garg, S.S. Mallick, P. García-Trinanes, R.J. Berry
Year: 2018
Citations: 93

Title: An experimental investigation on the effect of particle size into the flowability of fly ash
Authors: L. Rohilla, V. Garg, S.S. Mallick, G. Setia
Year: 2018
Citations: 32

Title: An experimental study on free-surface rolling segregation and correlations with angle of repose and particle sphericity
Authors: T. Deng, V. Garg, H. Salehi, M.S.A. Bradley
Year: 2020
Citations: 25

Title: A study of particle adhesion for cohesive powders using a novel mechanical surface energy tester
Authors: T. Deng, V. Garg, M.S.A. Bradley
Year: 2021
Citations: 19

Title: 3D Printing of Personalised Carvedilol Tablets Using Selective Laser Sintering
Authors: A.G. Tabriz, Q. Gonot-Munck, A. Baudoux, V. Garg, R. Farnish, O. Katsamenis, et al.
Year: 2023
Citations: 18

Title: Comparative studies of powder flow predictions using milligrams of powder for identifying powder flow issues
Authors: T. Deng, V. Garg, L.P. Diaz, D. Markl, C. Brown, A. Florence, M.S.A. Bradley
Year: 2022
Citations: 18

Title: Correlations between segregation intensity and material properties such as particle sizes and adhesions and novel methods for assessment
Authors: T. Deng, V. Garg, H. Salehi, M.S.A. Bradley
Year: 2021
Citations: 18

Title: A new method for assessing powder flowability based on physical properties and cohesiveness of particles using a small quantity of samples
Authors: V. Garg, T. Deng, M. Bradley
Year: 2022
Citations: 12

Title: Optimising Spread-Layer Quality in Powder Additive Manufacturing: Assessing Packing Fraction and Segregation Tendency
Authors: H. Salehi, J. Cummins, E. Gallino, V. Garg, T. Deng, A. Hassanpour, et al.
Year: 2023
Citations: 8

Title: Electrostatic Charging of Fine Powders and Assessment of Charge Polarity Using an Inductive Charge Sensor
Authors: T. Deng, V. Garg, M. Bradley
Year: 2023
Citations: 8

Conclusion

In summary, Dr. Vivek Garg exemplifies the qualities of an outstanding researcher through his pioneering contributions in powder technology, interdisciplinary research leadership, and impactful industrial collaborations. His scholarly output, patents, and recognition through awards such as the Best Innovation Award and the Rising Star Award reflect his dedication to advancing both scientific knowledge and industrial practices. With his proven track record of innovation, community engagement, and future-oriented research in sustainable solids handling and pharmaceutical technologies, Dr. Garg is highly deserving of the Best Researcher Award. His potential for continued leadership and global research impact positions him as an emerging leader in engineering science and applied technology.