Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Dr. Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Doctor | Air Force Engineering University | China

Dr. Zhenghao Yang is a distinguished researcher at the Air Force Engineering University, Xi’an, China, specializing in advanced combustion systems, energy conversion efficiency, and sustainable propulsion technologies. With 16 publications, 113 citations, and an h-index of 6, he has established a growing academic presence in renewable and green energy research. His work focuses on optimizing combustion and energy conversion mechanisms under specialized and extreme operating conditions, particularly for high-altitude applications in aerospace systems. A notable example of his research is the study titled “Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel” (Renewable Energy, 2026), which exemplifies his innovative efforts in integrating hydrogen-based propulsion technologies as sustainable alternatives to traditional fossil-fuel engines. His expertise encompasses computational fluid dynamics (CFD), thermodynamic modeling, performance optimization, and hybrid energy system integration, contributing to advancements in energy efficiency and emission reduction. Collaborating with 18 co-authors across various institutions, Dr. Yang demonstrates strong interdisciplinary engagement that connects mechanical engineering, renewable energy, and environmental sustainability. His research holds significant relevance for both aviation and defense sectors, addressing global challenges related to clean energy utilization, decarbonization, and eco-efficient propulsion. Through his continued exploration of hydrogen-fueled engines and high-performance energy systems, Dr. Zhenghao Yang contributes meaningfully to the worldwide transition toward sustainable energy technologies and low-carbon innovation, positioning himself as a promising leader in the field of green propulsion research.

Profile: Scopus | ORCID | ResearchGate

Featured Publications

1. Yang, Z., Jia, G., Fang, Z., Du, Y., He, G., & Wang, Z. (2026). Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel. Renewable Energy.

2. Yang, Z., Du, Y., Jia, G., Gao, X., Fang, Z., He, G., & Wang, Z. (2025). Clean combustion of a hydrogen-doped elliptical rotary engine based on turbulent jet ignition: Synergistic enhancement of thermodynamic and emission performance via flow field coupling. Energy Conversion and Management.

3. Yang, Z., Du, Y., Jia, G., Gao, X., He, G., & Wang, Z. (2025). Effect of multi-hole passive jet ignition on thermodynamic and combustion characteristics of hydrogen-doping elliptical rotary engine in high-altitude environment. Energy.

4. Yang, Z., Jia, G., Du, Y., Fang, Z., Gao, X., He, G., & Wang, Z. (2025). Investigation of high-tumble chamber of ammonia-hydrogen fueled elliptical rotary engine based on turbulence and combustion characteristics. Fuel.

5. Du, Y., Yang, Z., Zhang, Z., Wang, Z., He, G., Wang, J., & Zhao, P. (2024). Control strategy optimization exploration of a novel hydrogen-fed high-efficiency X-type rotary engine hybrid power system by coupling with recuperative organic Rankine cycle. Energy.

Dr. Zhenghao Yang’s research advances the development of clean, high-efficiency hydrogen-fueled rotary engines, contributing to global decarbonization, sustainable aviation, and next-generation propulsion technologies. His innovative work bridges energy science and engineering, fostering breakthroughs that support a greener and more energy-efficient future for society and industry alike.

Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Dr. Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Professor | The University of Alabama | United States

Dr. Mahdi Jahami is a dedicated researcher in the Department of Mechanical Engineering, Tuscaloosa, United States, whose work focuses on renewable energy systems, sustainable hydrogen production, and life cycle assessment (LCA). His research aims to develop environmentally responsible energy conversion technologies by integrating renewable resources with innovative modeling and optimization frameworks. Dr. Jahami’s scholarly contributions emphasize reducing greenhouse gas emissions through cleaner production pathways and advancing the global transition toward a low-carbon, sustainable energy future. His notable publication, “Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s goals,” provides a comprehensive assessment of hydrogen generation via Steam Methane Reforming (SMR) and Electrified-SMR systems powered by renewable energy. The study delivers significant insights into optimizing hydrogen production efficiency while aligning with ambitious environmental and policy objectives. With 9 citations, 1 publication, and a Scopus h-index of 1, Dr. Jahami’s research demonstrates growing academic recognition and influence in the fields of clean energy and carbon mitigation. Through collaboration with international co-authors, he applies an interdisciplinary approach combining techno-economic analysis, emissions modeling, and renewable energy integration to design efficient, sustainable hydrogen systems. Beyond academic contributions, his work holds strong societal impact by supporting global initiatives for carbon neutrality, clean technology advancement, and sustainable industrial transformation. Through rigorous research and innovation, Dr. Jahami continues to contribute to the evolution of green engineering solutions, reinforcing the vital role of hydrogen technologies in achieving net-zero emissions and driving global energy sustainability.

Profiles: Scopus | ResearchGate | LinkedIn

Featured Publications

1. Jahami, M. (2025). Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s 2035 goals. Renewable Energy. Cited by 9.

Dr. Mahdi Jahami’s research advances the global transition toward sustainable hydrogen production and renewable energy integration, providing innovative life cycle–based solutions that reduce emissions and support carbon-neutral industrial systems. His work bridges engineering innovation and environmental responsibility, driving progress toward a cleaner, more resilient energy future.

Mohsin Raza | Renewable Energy | Innovation Research Award

Dr. Mohsin Raza | Renewable Energy | Innovation Research Award

Post Doctoral Research Associate | University of Sharjah | United Arab Emirates

Dr. Mohsin Raza, Ph.D., is a distinguished researcher specializing in biomass valorization, bioenergy, green chemistry, and nanocellulose production. He is currently advancing research in sustainable material science and bio-based innovations as a Postdoctoral Research Associate at a leading research institute. His academic background and scientific expertise center on transforming agricultural and lignocellulosic wastes into high-value materials through green and energy-efficient processes. Dr. Raza’s work integrates biomass conversion technologies, lignin recovery, nanocellulose extraction, and bio-based thermal insulation development, emphasizing environmental sustainability and circular economy principles. His core research skills include thermochemical processing, biopolymer synthesis, pyrolysis kinetics, and the use of natural deep eutectic solvents for eco-friendly material synthesis. Highly skilled in advanced analytical techniques such as TGA, DSC, XRD, FTIR, GC-MS, SEM, and TEM, he also demonstrates excellence in intellectual property development, holding multiple granted U.S. patents and additional applications in the fields of biomass valorization and green solvent technologies. As a prolific author with extensive publications in high-impact Q1 journals from leading publishers, Dr. Raza’s research contributions have significantly advanced understanding in renewable energy systems, sustainable chemistry, and nanomaterial engineering. His work has been recognized through multiple innovation and sustainability awards, reflecting his leadership and creativity in promoting clean technologies. Through collaborative research and continuous innovation, Dr. Raza continues to shape the future of renewable materials and sustainable energy, contributing to global progress toward a circular bioeconomy, with a documented record of 994 citations, 28 publications, and an h-index of 14.

Profile: Google Scholar | Scopus | ORCID

Featured Publications

1. Inayat, A., & Raza, M. (2019). District cooling system via renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 107, 360–373. Cited by: 221

2. Raza, M., Abu-Jdayil, B., Al-Marzouqi, A. H., & Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats–Redfern method. Renewable Energy, 183, 67–77. Cited by: 161

3. Raza, M., Inayat, A., Ahmed, A., Jamil, F., Ghenai, C., Naqvi, S. R., Shanableh, A., & Park, Y. K. (2021). Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing. Sustainability, 13(19), 11061. Cited by: 148

4. Raza, M., Abu-Jdayil, B., Banat, F., & Al-Marzouqi, A. H. (2022). Isolation and characterization of cellulose nanocrystals from date palm waste. ACS Omega, 7(29), 25366–25379. Cited by: 102

5. Raza, M., & Abu-Jdayil, B. (2022). Cellulose nanocrystals from lignocellulosic feedstock: A review of production technology and surface chemistry modification. Cellulose, 29(2), 685–722. Cited by: 77

 

Ao Wang | Biomass | Best Researcher Award

Dr. Ao Wang | Biomass | Best Researcher Award

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry | China

Dr. Ao Wang is an Associate Research Fellow at the Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF) and currently serves as a visiting scholar at Nanyang Technological University, fostering international research collaborations. His professional expertise centers on the preparation and application of advanced functional carbon materials derived from biomass, with a particular focus on electrochemical energy storage. He has led major research projects, including national key programs and fundamental research initiatives at CAF. Dr. Wang’s contributions include elucidating the evolution mechanism of carbon microcrystals during lignin and cellulose pyrolysis, demonstrating that the isotropy of carbon crystal seeds drives the ordered growth of graphite-like microcrystals, and revealing the critical influence of catalyst-induced pore sizes on the formation of closed pore structures in energy storage carbon materials. He has published over 30 articles in high-impact journals such as Progress in Materials Science, Advanced Functional Materials, and Carbon Energy, and has been granted 8 invention patents. His research skills encompass biomass carbon material synthesis, catalytic carbonization, pore structure engineering, and electrochemical characterization for lithium-ion and sodium-ion batteries, as well as supercapacitors. Dr. Wang continues to advance the field of biomass-derived carbon materials for energy storage, demonstrating a strong commitment to sustainable energy solutions and functional material innovation, with a documented record of 1,899 citations, 99 documents, and an h-index of 24.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

1. Fan, M., Yuan, Q., Zhao, Y., Wang, Z., Wang, A., Liu, Y., Sun, K., Wu, J., Wang, L., … (2022). A facile “double‐catalysts” approach to directionally fabricate pyridinic N–B‐pair‐doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient … Advanced Materials, 34(13), 2107040. Cited by 163.

2. Fan, M., Wang, Z., Sun, K., Wang, A., Zhao, Y., Yuan, Q., Wang, R., Raj, J., Wu, J., … (2023). N–B–OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Advanced Materials, 35(17), 2209086. Cited by 150.

3. Wang, A., Sun, K., Xu, R., Sun, Y., Jiang, J. (2021). Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. Journal of Cleaner Production, 283, 125385. Cited by 118.

4. Chen, C., Sun, K., Huang, C., Yang, M., Fan, M., Wang, A., Zhang, G., Li, B., Jiang, J., … (2023). Investigation on the mechanism of structural reconstruction of biochars derived from lignin and cellulose during graphitization under high temperature. Biochar, 5(1), 51. Cited by 66.

5. Cao, M., Liu, Y., Sun, K., Li, H., Lin, X., Zhang, P., Zhou, L., Wang, A., Mehdi, S., … (2022). Coupling Fe3C nanoparticles and N‐doping on wood-derived carbon to construct reversible cathode for Zn–Air batteries. Small, 18(26), 2202014. Cited by 58.

 

Yao-Ching Hsieh | Renewable Energy | Best Researcher Award

Prof. Yao-Ching Hsieh | Renewable Energy | Best Researcher Award

Professor | National Sun Yat-sen University | Taiwan

Prof. Yao-Ching Hsieh is a distinguished professor in the Department of Electrical Engineering at National Sun Yat-sen University, with extensive expertise in battery charging technology, power electronic converters, power factor correction, and wireless power transfer, focusing on innovative solutions for energy efficiency and grid integration of renewable energy. He has led significant research projects, including the “Wireless Battery Charging System for Under Water Vehicles” funded by the National Science and Technology Council, Taiwan, and collaborated with industry on projects such as EMI analysis of MOSFETs in adapter circuitry. Prof. Hsieh has contributed to power electronics through the development of soft-switching techniques for interleaved converters, novel charge-equalization topologies for battery strings, and center-tapped pickup winding methods to enhance wireless power transfer efficiency. An active IEEE member, he has published numerous peer-reviewed articles in SCI and Scopus-indexed journals, served in editorial capacities, and engaged in international research collaborations. His work bridges theoretical innovation and practical applications, advancing energy systems and sustainable technologies while mentoring emerging engineers. Prof. Hsieh continues to drive innovation in battery and power electronics research, contributing to energy-efficient solutions and renewable energy integration, with a documented record of 3,729 citations, 139 documents, and an h-index of 25.

Profiles: Scopus | ORCID

Featured Publications

Hsieh, Y.-C., et al. (2024). Light load analysis and topology morphing between full-/half-bridge DC-to-DC converter. International Journal of Electronics. citation-1

Hsieh, Y.-C., et al. (2023). High-efficiency bidirectional resonant WPT system for electric vehicles. International Journal of Power Electronics and Drive Systems. citations-3

Hsieh, Y.-C., et al. (Conference Paper). Light-load conversion efficiency enhancement for three-phase dual active bridge DC-DC converters. citation-1

Hsieh, Y.-C., et al. (Conference Paper). A DC power connector with voltage spike suppression. citation-1

Hsieh, Y.-C., et al. (2025). State of health estimation for LiFePO4 batteries using incremental capacity analysis. Conference Paper.

Sergei Petrenko | Solar Energy | Best Researcher Award

Prof. Dr. Sergei Petrenko | Solar Energy | Best Researcher Award

Sirius University of Science and Technology | Russia

Prof. Sergei Petrenko, born in 1968 in Kaliningrad (the Baltic), is a distinguished Doctor of Technical Sciences and Professor at Sirius University, Russia, recognized for his extensive contributions to information security and digital technologies. He graduated with honors in 1991 from Leningrad State University with a degree in mathematics and engineering, laying a solid foundation for his academic and professional journey. Over the years, Prof. Petrenko has designed and implemented critical information systems for numerous national and corporate projects, including three national Situational-Crisis Centers (RCCs), three operators of special information services (MSSP and MDR), two virtual trusted communication operators (MVNO), more than ten segments of the System for Detection, Prevention, and Elimination of the Effects of Computer Attacks (SOPCA) and the System for Detection and Prevention of Computer Attacks (SPOCA), as well as five monitoring centers for information security threats and response, including CERT, CSIRT, and two industrial CERTs for IIoT/IoT environments. His research interests encompass information security, big data technologies, cloud security, corporate and industrial Internet protection, and innovative digital economy solutions. Prof. Petrenko possesses advanced research skills in auditing corporate cybersecurity, risk management, security policy formulation, and developing methods and technologies to safeguard critical national infrastructure. He has authored and co-authored 14 monographs and practical manuals published by Springer Nature Switzerland AG, River Publishers, Peter, Athena, and DMK-Press, including works such as “Big Data Technologies for Monitoring,” “Innovation for the Digital Economy,” and “Methods and Technologies of Cloud Security,” alongside over 350 articles in leading journals and conference proceedings. His exceptional contributions to national projects have earned him the prestigious “Big ZUBR” and “Golden ZUBR” awards. Prof. Petrenko continues to lead the State Scientific School, advancing both applied and theoretical research in information security, fostering innovation, and mentoring the next generation of cybersecurity experts, with a documented record of 296 citations, 55 documents, and an h-index of 10.

Profiles: Google Scholar | Scopus| ORCID

Featured Publications

1. Balyabin, A. A., & Petrenko, S. A. (2025). Model of a blockchain platform with cyber-immunity under quantum attacks. Voprosy kiberbezopasnosti, (3), 72-82.

2. Balyabin, A., & Petrenko, S. (2025). Methodology for synthesizing quantum-resistant blockchain platforms with cyber-immunity. Voprosy kiberbezopasnosti, (4), 46-54.

3. Buchatskiy, P., Onishchenko, S., Petrenko, S., & Teploukhov, S. (2025). Methodology for assessing the technical potential of solar energy based on artificial intelligence technologies and simulation-modeling tools. Energies.

4. Olifirov, A. V., Makoveichuk, K., & Petrenko, S. (2025). Research of aspects of omnicanal approach in the industry of digital learning technologies of organizations. In [Book Title], Springer Nature Switzerland AG (Chapter).

5. Petrenko, S. A., & Alexei Petrenko. (2023). Basic Algorithms Quantum Cryptanalysis. Voprosy kiberbezopasnosti, (1), 100-115.

 

 

Rifat Yildirim | Bioenergy | Best Researcher Award

Assist. Prof. Dr. Rifat Yildirim | Bioenergy | Best Researcher Award

Assistant Professor | Isparta University of Applied Sciences, Sütçüler Prof. Dr. Hasan Gürbüz Vocational School | Turkey

Assist. Prof. Dr. Rifat Yıldırım is a dedicated scholar at Isparta University of Applied Sciences, Sütçüler Prof. Dr. Hasan Gürbüz Vocational School, Türkiye, specializing in sustainable waste management, bioenergy production, and environmental biotechnology. He earned his academic qualifications with a strong foundation in environmental engineering and biotechnology, focusing on developing sustainable technologies that align with circular bioeconomy principles. Over the years, Dr. Yıldırım has gained extensive professional experience through his involvement in multiple TÜBİTAK-funded projects, including leadership roles as Principal Investigator and R&D Personnel in initiatives related to biogas production, composting systems, and biofilter development. His expertise extends to optimizing composting and anaerobic digestion processes using machine learning and multi-criteria decision-making models, which contribute to resource efficiency, carbon reduction, and energy recovery from organic wastes. Dr. Yıldırım’s research interests encompass waste-to-energy technologies, microbial ecology, environmental risk assessment, and renewable energy systems, where he applies innovative methodologies to address global sustainability challenges. His research skills include bioenergy modeling, statistical optimization, environmental monitoring, and decision-support system development, reflecting a multidisciplinary and solution-driven approach. He has published several papers in prestigious journals such as Environmental Progress & Sustainable Energy, Integrated Environmental Assessment and Management, and Engineering Applications of Artificial Intelligence, advancing the scientific understanding of sustainable waste valorization. Dr. Yıldırım has also contributed to scientific literature with books (ISBN: 978-625-398-818-0, 978-625-398-826-5) and has trained students in national environmental programs. His commitment to integrating scientific innovation with sustainability goals underscores his growing prominence in environmental science and bioenergy research. Dr. Rifat Yıldırım’s academic impact is reflected in his emerging recognition with 5 citations, 4 documents, and an h-index of 2, highlighting his promising influence in sustainable bioenergy and environmental biotechnology research.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1. Yıldırım, R. (2025, July 31). Analysis of composting methods for sustainable management of biodegradable waste using decision‐making techniques. Environmental Progress & Sustainable Energy, 1–14.

2. Yıldırım, R. (2025, June 17). Comparative analysis of alternatives for sustainable management of biodegradable waste. Integrated Environmental Assessment and Management.

3. Yıldırım, R. (2025, January 29). Machine learning applications in biogas and methane production: A bibliometric analysis. Preprint.

4. Yıldırım, R. (2025, January 9). Bibliometric analysis of biological pretreatments in biogas processes. Polish Journal of Environmental Studies, 34(2), 1439–1443.

5. Ekinci, K., Çiftçi, F., Kumbul, B. S., Yıldırım, R., Solak, M., & Çoban, V. (2023, October). Co-fermentation of macroalga Elodea canadensis in different mixing ratios with dairy manure. Biomass Conversion and Biorefinery, 13, 14185–14192.

6. Yıldırım, R. (2023, August 21). Biyogaz üretim süreçlerinde kullanılacak en uygun risk değerlendirme metodolojisinin analitik hiyerarşi prosesi ile belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12, 1130–1140.

Derese Kebede Teklie | Renewable Energy | Best Academic Researcher Award

Dr. Derese Kebede Teklie | Renewable Energy | Best Academic Researcher Award

Researcher | Istanbul Technical University | Ethiopia

Dr. Derese Kebede Teklie is an accomplished scholar in Development and Environmental Economics with a strong focus on the intersection of green economy, institutional quality, and sustainable development in Africa. Born on August 19, 1988, in Arsi, Ethiopia, he holds a Ph.D. in Economics from Istanbul Technical University, Turkey, under the supervision of Assoc. Prof. Dr. Mete Han Yağmur. He is also pursuing a second Ph.D. in Green Economy and Sustainability at Brescia University, Italy, expanding his expertise in environmental policy and sustainable growth. Dr. Teklie earned his M.Sc. in Development Economics from Debre Markos University, Ethiopia, and a B.A. in Economics from Mekelle University. His academic journey has been enhanced by international exposure through the Erasmus Exchange Program at Istanbul Kültür University, fostering global research collaboration and cross-cultural learning. Professionally, he serves as an Assistant Researcher at Istanbul Technical University, contributing to projects on Africa’s economic growth, environmental sustainability, and green innovation. Previously, he worked as a Lecturer at Rift Valley University, Ethiopia, and held key roles in NGO project coordination and government research institutes, demonstrating his versatility across academia, research, and community development. His research interests include environmental economics, green growth, renewable energy policy, institutional development, and econometric modeling. Dr. Teklie is skilled in advanced analytical tools such as STATA, SPSS, EViews, MATLAB, Python, and CGE modeling, reflecting his technical proficiency in empirical research. His publications in Sustainability and the International Journal of Energy Economics and Policy address pressing issues in Africa’s environmental and economic transformation. Recognized for his academic dedication and contributions to sustainable development, Dr. Teklie continues to advance impactful interdisciplinary research and international collaboration. Dr. Derese Kebede Teklie’s academic impact is reflected in his growing recognition with 19 citations, 3 documents, and an h-index of 2, highlighting his emerging influence in environmental and development economics research.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1. Teklie, D. K., & Yağmur, M. H. (2024). The Role of Green Innovation, Renewable Energy, and Institutional Quality in Promoting Green Growth: Evidence from African Countries. Sustainability, 16(14), 6166.

2. Teklie, D. K., & Yağmur, M. H. (2024). Effect of Economic Growth on CO₂ Emission in Africa: Do Financial Development and Globalization Matter? International Journal of Energy Economics and Policy, 14(1), 121–140.

3. Teklie, D. K., & Doğan, B. (2024). Analyzing the Dynamics: Asymmetric Effects of Economic Growth, Technological Innovation, and Renewable Energy on Carbon Emissions in Africa. International Journal of Energy Economics and Policy, 14(5), 509–519.

4. Teklie, D. K. (2021). Rural Household Poverty and Its Determining Factors: A Poverty Analysis Using Alternative Measurement Approaches. International Journal of Advanced Research.

Guanglong Ge | Energy Storage | Best Researcher Award

Dr. Guanglong Ge | Energy Storage | Best Researcher Award

Postdoctoral | Tongji University | China

Dr. Guanglong Ge is a distinguished materials scientist specializing in antiferroelectric, ferroelectric, relaxor ferroelectric, and dielectric materials, with a strong focus on energy storage performance, electrocaloric effects, piezoelectric properties, and structure–property relationships. He earned his Ph.D. in Materials Science from Tongji University, China (2017–2022), following his B.Sc. in Inorganic Materials from Chang’an University (2013–2017). Currently serving as a Postdoctoral Researcher at Tongji University, Dr. Ge leads cutting-edge investigations on the energy storage performance of antiferroelectric ceramics, supported by prestigious funding such as the Sino-German (CSC-DAAD) Postdoc Scholarship, China Postdoctoral Science Foundation, and the Shanghai Postdoctoral Excellence Program. His research contributions have significantly advanced the understanding of multilayer ceramic capacitors and field-induced structural evolution in dielectric materials. Dr. Ge’s professional experience includes participation in national and international R&D programs and collaborative projects aimed at developing high-performance energy storage materials with broad technological relevance. His key research skills encompass materials synthesis, dielectric characterization, in-situ structural analysis, and multiphysics coupling simulation, enabling him to uncover critical insights into phase transitions and energy optimization mechanisms. Recognized for his innovative contributions, Dr. Ge has published over 66 peer-reviewed papers in top journals, including Advanced Materials, Nature Communications, Science Advances, and Energy Storage Materials, and has delivered presentations at major international conferences such as the Ferroelectric International Seminar and the China–Japan Symposium on Ferroelectric Materials. His dedication has earned him multiple awards, including competitive postdoctoral fellowships and recognition for scientific excellence in dielectric research. Dr. Ge’s future research aims to pioneer next-generation sustainable energy storage technologies through interdisciplinary collaboration and advanced material design. Dr. Guanglong Ge’s academic impact is further reflected in his growing recognition with 2,662 citations, 66 documents, and an h-index of 27, demonstrating his influential role in advancing antiferroelectric ceramics and energy storage materials research.

Profiles: Scopus | ORCID

Featured Publications

1. Ge, G., Zeng, H., Qian, J., Shen, B., Cheng, Z., Zhai, J., Liu, Y., Wang, D., & He, L. (2025). Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering. Nature Communications. Citations: 7

2. Ge, G., Chen, C., Qian, J., Lin, J., Shi, C., Li, G., Wang, S., & Zhai, J. (2025). Local heterogeneous dipolar structures drive gigantic capacitive energy storage in antiferroelectric ceramics. Nature Communications. Citations: 2

3. Ge, G., Yang, J., Shi, C., Lin, J., Hao, Y., & Wei, Y. (2025). Nano-domain configuration boosting energy storage capacity of NaNbO3-based relaxor ferroelectrics. Journal of Power Sources. Citations: 1

4. Ge, G., Hao, Y., Lin, J., Shi, C., & Yao, W. (2025). Outstanding comprehensive piezoelectric properties in KNN-based ceramics via co-optimization of crystal structure and grain orientation. Acta Materialia.

5. Ge, G., Qian, J., Chen, C., Shi, C., Lin, J., Li, G., & Zhai, J. (2025). Excellent energy storage performance of polymorphic modulated antiferroelectric lead zirconate ceramic. Advanced Materials. Citations: 1

 

Debajeet Bora | Green Hydrogen | Best Researcher Award

Assist. Prof. Dr. Debajeet Bora | Green Hydrogen | Best Researcher Award   

Assistant Professor HDR | Mohammed VI Polytechnic University (UM6P) | Morocco

Dr. Debajeet K. Bora is a distinguished researcher and Assistant Professor HDR at Mohammed VI Polytechnic University, Morocco, with extensive expertise in the synthesis and molecular understanding of metal oxides for solar energy conversion, electrocatalysis, artificial photosynthesis, hydrogen generation, and CO₂ reduction. He earned his Ph.D. in Nanosciences from the University of Basel, Switzerland in 2012 (Magna Cum Laude), completed his University Habilitation de Research in 2023 at Mohammed VI Polytechnic University on artificial photosynthesis and electrolyzer-based hydrogen production, and holds a M.Sc. in Nanoscience and Technology from Tezpur University, India. Dr. Bora’s professional experience spans leading research projects at ETH Zürich, Empa Swiss Federal Laboratories, Lawrence Berkeley National Laboratory, and Jain University, with significant international collaborations in Europe, the USA, and Morocco. His research interests focus on hybrid nanoarchitectures, surface functionalization, perovskite electrocatalysts, and pilot-scale renewable hydrogen and ammonia production. Dr. Bora has established and managed research groups, supervised Ph.D. and Master’s students, and successfully led high-impact projects including the ENSUS Core Grant (700K USD), Research Start Grants, and the Green Ammonia Vision Project (1.5M Euro), demonstrating strong leadership and mentorship skills. He is an active peer reviewer for leading journals, editorial board member of Scientific Reports, and member of professional societies including the American Chemical Society. His awards and honors include the EMPA Research Award 2013, recognition as a Top 3% Scientist in Nanoscience and Nanotechnology, and multiple international travel grants and media coverages highlighting his work in green hydrogen. Dr. Bora’s research achievements, global collaborations, and leadership in sustainable energy technologies underscore his impact on the scientific community and society. Dr. Bora’s academic impact is further reflected in his growing recognition with 1,175 citations, 43 documents, and an h-index of 17, demonstrating his influential role in advancing nanomaterials, renewable energy, and green hydrogen research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Bora, D. K., Braun, A., & Constable, E. C. (2013). “In rust we trust”. Hematite–the prospective inorganic backbone for artificial photosynthesis. Energy & Environmental Science, 6(2), 407–425.  (Cited by 262)

2. Braun, A., Sivula, K., Bora, D. K., Zhu, J., Zhang, L., Gratzel, M., Guo, J., … (2012). Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. The Journal of Physical Chemistry C, 116(32), 16870–16875.  (Cited by 183)

3. Bora, D. K., Braun, A., Erat, S., Safonova, O., Graule, T., & Constable, E. C. (2012). Evolution of structural properties of iron oxide nanoparticles during temperature treatment from 250 °C–900 °C: X-ray diffraction and Fe K-shell pre-edge X-ray absorption study. Current Applied Physics, 12(3), 817–825.  (Cited by 105)

4. Milewska, A., Świerczek, K., Toboła, J., Boudoire, F., Hu, Y., Bora, D. K., Mun, B. S., … (2014). The nature of the nonmetal-metal transition in LixCoO2 oxide. Solid State Ionics, 263, 110.  (Cited by 94)

5. Bora, D. K., Braun, A., Erni, R., Fortunato, G., Graule, T., & Constable, E. C. (2011). Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chemistry of Materials, 23(8), 2051–2061.  (Cited by 76)