Tao Sun | Renewable Energy Systems | Best Researcher Award

Prof. Tao Sun | Renewable Energy Systems | Best Researcher Award

Professor | Northwest University | China

Dr. Tao Sun is a distinguished Professor at the School of Chemical Engineering, Northwest University, China, widely recognized for his pioneering contributions to the fields of energy conversion and environmental catalysis. His research focuses on the rational design and synthesis of nanostructured and single-atom materials for electrocatalysis, photocatalysis, water splitting, fuel cells, metal–air batteries, and CO₂ reduction. By integrating advanced concepts in atomic-level engineering, heterojunction construction, and defect chemistry, he has developed highly efficient and durable materials that address pressing global challenges in clean energy generation and pollutant degradation. Dr. Sun has authored more than ninety peer-reviewed publications, including numerous papers as first or corresponding author in internationally renowned journals such as Nature Nanotechnology, Advanced Materials, Advanced Functional Materials, ACS Nano, ACS Catalysis, and Advanced Science. His research has achieved substantial global recognition, reflected by thousands of citations and a strong h-index, underscoring his scientific influence and leadership in catalysis and materials chemistry. In addition to his prolific research output, Dr. Sun serves as a reviewer for over fifty leading international journals and contributes to the scholarly community as a youth editor for EcoEnergy, Advanced Powder Materials, and Carbon Energy. His work bridges fundamental science and applied technology, offering innovative strategies for sustainable energy conversion, carbon-neutral pathways, and environmental protection. Through his commitment to advancing catalyst design and clean energy technologies, Dr. Tao Sun continues to make impactful contributions that shape the future of green chemistry and sustainable materials engineering. Dr. Tao Sun’s academic excellence is reflected in his global research influence, with 6,780 citations, 94 publications, and an h-index of 38, highlighting his leading role in the field of materials and energy science.

Profiles: Scopus | ORCID

Featured Publications

1. Sun, T., et al. (2025). Photocatalytic H₂ evolution over Ni₃(PO₄)₂/twinned-Cd₀.₅Zn₀.₅S S-scheme homo-heterojunction using degradable plastics as electron donors. Journal of Materials Science and Technology. Citations: 8

2. Sun, T., et al. (2025). Efficient hydrogen production coupled with polylactic acid plastic electro-treatment over a CoFe LDH/MoSe₂/NixSey/NF heterostructure electrocatalyst. ACS Sustainable Chemistry & Engineering. Citations: 4

3. Sun, T., et al. (2025). Co₃S₄/MnS p–p heterojunction as a highly efficient electrocatalyst for water splitting and electrochemical oxidation of organic molecules. Journal of Colloid and Interface Science. Citations: 10

4. Sun, T., et al. (2025). Efficient photocatalytic H₂ evolution over SnS₂/twinned Mn₀.₅Cd₀.₅S hetero-homojunction with double S-scheme charge transfer routes. Journal of Materials Science and Technology. Citations: 31

5. Sun, T., et al. (2025). Tuning interfacial charge transfer for efficient photodegradation of tetracycline hydrochloride over Ti₃C₂/Bi₁₂O₁₇Cl₂ Schottky heterojunction and theoretical calculations. Applied Surface Science. Citations: 16

Dr. Tao Sun’s pioneering research in photocatalysis and electrocatalysis advances sustainable hydrogen production and plastic waste valorization, bridging clean energy generation with environmental remediation. His innovative heterostructure designs drive global progress toward carbon-neutral technologies and circular energy systems, fostering transformative impact across science, industry, and society.

Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Dr. Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Doctor | Air Force Engineering University | China

Dr. Zhenghao Yang is a distinguished researcher at the Air Force Engineering University, Xi’an, China, specializing in advanced combustion systems, energy conversion efficiency, and sustainable propulsion technologies. With 16 publications, 113 citations, and an h-index of 6, he has established a growing academic presence in renewable and green energy research. His work focuses on optimizing combustion and energy conversion mechanisms under specialized and extreme operating conditions, particularly for high-altitude applications in aerospace systems. A notable example of his research is the study titled “Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel” (Renewable Energy, 2026), which exemplifies his innovative efforts in integrating hydrogen-based propulsion technologies as sustainable alternatives to traditional fossil-fuel engines. His expertise encompasses computational fluid dynamics (CFD), thermodynamic modeling, performance optimization, and hybrid energy system integration, contributing to advancements in energy efficiency and emission reduction. Collaborating with 18 co-authors across various institutions, Dr. Yang demonstrates strong interdisciplinary engagement that connects mechanical engineering, renewable energy, and environmental sustainability. His research holds significant relevance for both aviation and defense sectors, addressing global challenges related to clean energy utilization, decarbonization, and eco-efficient propulsion. Through his continued exploration of hydrogen-fueled engines and high-performance energy systems, Dr. Zhenghao Yang contributes meaningfully to the worldwide transition toward sustainable energy technologies and low-carbon innovation, positioning himself as a promising leader in the field of green propulsion research.

Profile: Scopus | ORCID | ResearchGate

Featured Publications

1. Yang, Z., Jia, G., Fang, Z., Du, Y., He, G., & Wang, Z. (2026). Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel. Renewable Energy.

2. Yang, Z., Du, Y., Jia, G., Gao, X., Fang, Z., He, G., & Wang, Z. (2025). Clean combustion of a hydrogen-doped elliptical rotary engine based on turbulent jet ignition: Synergistic enhancement of thermodynamic and emission performance via flow field coupling. Energy Conversion and Management.

3. Yang, Z., Du, Y., Jia, G., Gao, X., He, G., & Wang, Z. (2025). Effect of multi-hole passive jet ignition on thermodynamic and combustion characteristics of hydrogen-doping elliptical rotary engine in high-altitude environment. Energy.

4. Yang, Z., Jia, G., Du, Y., Fang, Z., Gao, X., He, G., & Wang, Z. (2025). Investigation of high-tumble chamber of ammonia-hydrogen fueled elliptical rotary engine based on turbulence and combustion characteristics. Fuel.

5. Du, Y., Yang, Z., Zhang, Z., Wang, Z., He, G., Wang, J., & Zhao, P. (2024). Control strategy optimization exploration of a novel hydrogen-fed high-efficiency X-type rotary engine hybrid power system by coupling with recuperative organic Rankine cycle. Energy.

Dr. Zhenghao Yang’s research advances the development of clean, high-efficiency hydrogen-fueled rotary engines, contributing to global decarbonization, sustainable aviation, and next-generation propulsion technologies. His innovative work bridges energy science and engineering, fostering breakthroughs that support a greener and more energy-efficient future for society and industry alike.

Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Dr. Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Professor | The University of Alabama | United States

Dr. Mahdi Jahami is a dedicated researcher in the Department of Mechanical Engineering, Tuscaloosa, United States, whose work focuses on renewable energy systems, sustainable hydrogen production, and life cycle assessment (LCA). His research aims to develop environmentally responsible energy conversion technologies by integrating renewable resources with innovative modeling and optimization frameworks. Dr. Jahami’s scholarly contributions emphasize reducing greenhouse gas emissions through cleaner production pathways and advancing the global transition toward a low-carbon, sustainable energy future. His notable publication, “Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s goals,” provides a comprehensive assessment of hydrogen generation via Steam Methane Reforming (SMR) and Electrified-SMR systems powered by renewable energy. The study delivers significant insights into optimizing hydrogen production efficiency while aligning with ambitious environmental and policy objectives. With 9 citations, 1 publication, and a Scopus h-index of 1, Dr. Jahami’s research demonstrates growing academic recognition and influence in the fields of clean energy and carbon mitigation. Through collaboration with international co-authors, he applies an interdisciplinary approach combining techno-economic analysis, emissions modeling, and renewable energy integration to design efficient, sustainable hydrogen systems. Beyond academic contributions, his work holds strong societal impact by supporting global initiatives for carbon neutrality, clean technology advancement, and sustainable industrial transformation. Through rigorous research and innovation, Dr. Jahami continues to contribute to the evolution of green engineering solutions, reinforcing the vital role of hydrogen technologies in achieving net-zero emissions and driving global energy sustainability.

Profiles: Scopus | ResearchGate | LinkedIn

Featured Publications

1. Jahami, M. (2025). Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s 2035 goals. Renewable Energy. Cited by 9.

Dr. Mahdi Jahami’s research advances the global transition toward sustainable hydrogen production and renewable energy integration, providing innovative life cycle–based solutions that reduce emissions and support carbon-neutral industrial systems. His work bridges engineering innovation and environmental responsibility, driving progress toward a cleaner, more resilient energy future.

Debajeet Bora | Green Hydrogen | Best Researcher Award

Assist. Prof. Dr. Debajeet Bora | Green Hydrogen | Best Researcher Award   

Assistant Professor HDR | Mohammed VI Polytechnic University (UM6P) | Morocco

Dr. Debajeet K. Bora is a distinguished researcher and Assistant Professor HDR at Mohammed VI Polytechnic University, Morocco, with extensive expertise in the synthesis and molecular understanding of metal oxides for solar energy conversion, electrocatalysis, artificial photosynthesis, hydrogen generation, and CO₂ reduction. He earned his Ph.D. in Nanosciences from the University of Basel, Switzerland in 2012 (Magna Cum Laude), completed his University Habilitation de Research in 2023 at Mohammed VI Polytechnic University on artificial photosynthesis and electrolyzer-based hydrogen production, and holds a M.Sc. in Nanoscience and Technology from Tezpur University, India. Dr. Bora’s professional experience spans leading research projects at ETH Zürich, Empa Swiss Federal Laboratories, Lawrence Berkeley National Laboratory, and Jain University, with significant international collaborations in Europe, the USA, and Morocco. His research interests focus on hybrid nanoarchitectures, surface functionalization, perovskite electrocatalysts, and pilot-scale renewable hydrogen and ammonia production. Dr. Bora has established and managed research groups, supervised Ph.D. and Master’s students, and successfully led high-impact projects including the ENSUS Core Grant (700K USD), Research Start Grants, and the Green Ammonia Vision Project (1.5M Euro), demonstrating strong leadership and mentorship skills. He is an active peer reviewer for leading journals, editorial board member of Scientific Reports, and member of professional societies including the American Chemical Society. His awards and honors include the EMPA Research Award 2013, recognition as a Top 3% Scientist in Nanoscience and Nanotechnology, and multiple international travel grants and media coverages highlighting his work in green hydrogen. Dr. Bora’s research achievements, global collaborations, and leadership in sustainable energy technologies underscore his impact on the scientific community and society. Dr. Bora’s academic impact is further reflected in his growing recognition with 1,175 citations, 43 documents, and an h-index of 17, demonstrating his influential role in advancing nanomaterials, renewable energy, and green hydrogen research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Bora, D. K., Braun, A., & Constable, E. C. (2013). “In rust we trust”. Hematite–the prospective inorganic backbone for artificial photosynthesis. Energy & Environmental Science, 6(2), 407–425.  (Cited by 262)

2. Braun, A., Sivula, K., Bora, D. K., Zhu, J., Zhang, L., Gratzel, M., Guo, J., … (2012). Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. The Journal of Physical Chemistry C, 116(32), 16870–16875.  (Cited by 183)

3. Bora, D. K., Braun, A., Erat, S., Safonova, O., Graule, T., & Constable, E. C. (2012). Evolution of structural properties of iron oxide nanoparticles during temperature treatment from 250 °C–900 °C: X-ray diffraction and Fe K-shell pre-edge X-ray absorption study. Current Applied Physics, 12(3), 817–825.  (Cited by 105)

4. Milewska, A., Świerczek, K., Toboła, J., Boudoire, F., Hu, Y., Bora, D. K., Mun, B. S., … (2014). The nature of the nonmetal-metal transition in LixCoO2 oxide. Solid State Ionics, 263, 110.  (Cited by 94)

5. Bora, D. K., Braun, A., Erni, R., Fortunato, G., Graule, T., & Constable, E. C. (2011). Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chemistry of Materials, 23(8), 2051–2061.  (Cited by 76)

 

Razieh Etezadi | Green Hydrogen | Best Researcher Award

Dr. Razieh Etezadi | Green Hydrogen | Best Researcher Award

Senior Researcher | USC Viterbi School of Engineering | United States

Dr. Razieh Etezadi is an accomplished researcher and Ph.D. candidate in Chemical Engineering at the University of Southern California, Viterbi School of Engineering, supported by a prestigious multi-year scholarship and Merit Award. She holds a Master’s in Chemical Engineering and a Master’s in Environmental Engineering from Shiraz University, where she also completed her Bachelor’s in Chemical Engineering as a top-ranked student. Professionally, she has served as Project Engineer and Process Designer on a major California Energy Commission–funded hydrogen production project, leading cross-functional teams, significantly improving process efficiency, and lowering hydrogen production costs. Her professional experience also includes roles as a Process Automation Engineer, Lecturer at Zand Shiraz University, and Research Associate in Metabolic Engineering, where she developed novel algorithms for gene amplification optimization and bioreactor dynamic modeling. Her research interests include hydrogen production and storage, process design and optimization, system automation, metabolic engineering, and digital twin modeling for energy systems. She is proficient in MATLAB, Aspen Plus, COMSOL, LabVIEW, and project management tools, with expertise in process modeling, risk assessment, and advanced instrumentation. Dr. Etezadi’s work has been published in AIChE Journal and Elsevier’s Advances in Synthesis Gas and presented at international conferences, reflecting her commitment to impactful research. She is a Six Sigma Green Belt, with PMP and PE certifications in progress, and actively participates in professional development and industry workshops. Recognized for her leadership, she mentors students and contributes to collaborative research platforms that connect academia and industry. Her growing academic impact is reflected in 28 citations by 27 documents, 4 documents indexed, and an h-index of 3.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

1. Aquino, F., Etezadi, R., Moh, I., Tsotsis, T., & Tasser, C. (2025). In-situ bio-methanation in food waste digesters using CO₂ and catalytically-derived hydrogen from biogas. California Energy Commission Publications.

2. Etezadi, R., & Setoodeh, P. (2018). Gene overexpression targets for enhancement of heterologous production of diverse terpenoids in Escherichia coli. Proceedings of the 3rd Iranian Conference on Systems Biology, Tehran, Iran.

3. Mohammadi, S., Etezadi, R., Sarafzadeh, P., & Ayatollahi, S. (2013). Study of effects of different chemical surfactants on cell surface hydrophobicity (CSH) of Enterobacter cloacae microorganism. First National Iranian Petroleum and Gas Conference, Kerman, Iran.

4. Zhao, L., Etezadi, R., & Tsotsis, T. (2023). Syngas from coal. In Advances in synthesis gas: Methods, technologies and applications (pp. 363–377). Elsevier. (Cited by 6)

5. Etezadi, R., Zhao, L., & Tsotsis, T. (2023). Syngas from food waste. In Advances in synthesis gas: Methods, technologies and applications (pp. 439–455). Elsevier. (Cited by 2)