Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Dr. Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Professor | The University of Alabama | United States

Dr. Mahdi Jahami is a dedicated researcher in the Department of Mechanical Engineering, Tuscaloosa, United States, whose work focuses on renewable energy systems, sustainable hydrogen production, and life cycle assessment (LCA). His research aims to develop environmentally responsible energy conversion technologies by integrating renewable resources with innovative modeling and optimization frameworks. Dr. Jahami’s scholarly contributions emphasize reducing greenhouse gas emissions through cleaner production pathways and advancing the global transition toward a low-carbon, sustainable energy future. His notable publication, “Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s goals,” provides a comprehensive assessment of hydrogen generation via Steam Methane Reforming (SMR) and Electrified-SMR systems powered by renewable energy. The study delivers significant insights into optimizing hydrogen production efficiency while aligning with ambitious environmental and policy objectives. With 9 citations, 1 publication, and a Scopus h-index of 1, Dr. Jahami’s research demonstrates growing academic recognition and influence in the fields of clean energy and carbon mitigation. Through collaboration with international co-authors, he applies an interdisciplinary approach combining techno-economic analysis, emissions modeling, and renewable energy integration to design efficient, sustainable hydrogen systems. Beyond academic contributions, his work holds strong societal impact by supporting global initiatives for carbon neutrality, clean technology advancement, and sustainable industrial transformation. Through rigorous research and innovation, Dr. Jahami continues to contribute to the evolution of green engineering solutions, reinforcing the vital role of hydrogen technologies in achieving net-zero emissions and driving global energy sustainability.

Profiles: Scopus | ResearchGate | LinkedIn

Featured Publications

1. Jahami, M. (2025). Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s 2035 goals. Renewable Energy. Cited by 9.

Dr. Mahdi Jahami’s research advances the global transition toward sustainable hydrogen production and renewable energy integration, providing innovative life cycle–based solutions that reduce emissions and support carbon-neutral industrial systems. His work bridges engineering innovation and environmental responsibility, driving progress toward a cleaner, more resilient energy future.

Mehdi Safaei | Sustainable Energy | Renewable Energy Education Award

Assist. Prof. Dr. Mehdi Safaei | Sustainable Energy | Renewable Energy Education Award

Assistant Professor | Istanbul Gelişim University | Turkey

Dr. Mehdi Safaei is an accomplished scholar with over 12 years of teaching and research experience in Industrial Engineering, specializing in supply chain management, logistics optimization, and sustainable supply networks. He earned his Ph.D. in Industrial Engineering (Logistics and Supply Network) from the University of Bremen, Germany in 2014, graduating with magna cum laude distinction and a perfect GPA, supported by the prestigious IGS scholarship. He also holds an M.Sc. and B.Sc. in Industrial Engineering from Sharif University of Technology, Iran, where he ranked first in the highly competitive national entrance examination. Professionally, Dr. Safaei has served as Assistant Professor at Istanbul Gelisim University since 2019, leading TÜBİTAK-funded projects, publishing extensively, and supervising more than 400 undergraduate and 30 graduate theses. His previous roles include Assistant Professor at Razi Vaccine and Serum Research Institute, Lecturer at the University of Tehran and Al-Zahra University, and Research Assistant at BIBA-LogDynamic, Germany, where he received three Best Paper Awards. His research interests include dynamic supply network design, green supply chain management, machine learning in logistics, crisis management, and Industry 4.0 integration. He is skilled in supply chain modeling, project management, risk analysis, and quantitative research, with advanced expertise in simulation, ERP systems, and statistical analysis. A dedicated mentor and collaborator, he has translated key logistics texts, authored two books, and published 40+ journal and conference papers in reputed outlets such as IEEE, Elsevier, and Scopus-indexed journals. His professional affiliations include INFORMS, CSCMP, EurOMA, IISE, and IAENG, reflecting his active engagement with the global research community. Dr. Safaei’s outstanding achievements have earned him honors such as “Magna Cum Laude” recognition, national top rankings, and multiple international awards. Dr. Safaei’s growing academic impact is reflected in 132 citations, 17 documents, and an h-index of 7, demonstrating his significant and sustained influence in the field of industrial engineering and sustainable supply chain management.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Alsharif, A. H., Salleh, N. Z. M., Baharun, R. B., & Safaei, M. (2020). Neuromarketing approach: An overview and future research directions. Journal of Theoretical and Applied Information Technology, 98(7), 915–925. Cited by 65

2. Safari, Y., Abdollahi, S. A., Mahmoudi, M., Safaei, M., Taghinia, F., & Pasha, P. (2023). Numerical study of heat transfer of wavy channel supercritical CO2 PCHE with various channel geometries. International Journal of Thermofluids, 18, 100330. Cited by 32

3. Mosier, W., Elhadary, T., Elhaty, I. A. M., & Safaei, M. (2020). Crisis management and the impact of pandemics on religious tourism. Dublin Institute of Technology Conference Proceedings. Cited by 30

4. Safaei, M. (2014). An integrated multi-objective model for allocating the limited sources in a multiple multi-stage lean supply chain. Economic Modelling, 37, 224–237. Cited by 26

5. Safaei, M., & Thoben, K. D. (2014). Measuring and evaluating of the network type impact on time uncertainty in the supply networks with three nodes. Measurement, 56, 121–127. Cited by 20