Ao Wang | Biomass | Best Researcher Award

Dr. Ao Wang | Biomass | Best Researcher Award

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry | China

Dr. Ao Wang is an Associate Research Fellow at the Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF) and currently serves as a visiting scholar at Nanyang Technological University, fostering international research collaborations. His professional expertise centers on the preparation and application of advanced functional carbon materials derived from biomass, with a particular focus on electrochemical energy storage. He has led major research projects, including national key programs and fundamental research initiatives at CAF. Dr. Wang’s contributions include elucidating the evolution mechanism of carbon microcrystals during lignin and cellulose pyrolysis, demonstrating that the isotropy of carbon crystal seeds drives the ordered growth of graphite-like microcrystals, and revealing the critical influence of catalyst-induced pore sizes on the formation of closed pore structures in energy storage carbon materials. He has published over 30 articles in high-impact journals such as Progress in Materials Science, Advanced Functional Materials, and Carbon Energy, and has been granted 8 invention patents. His research skills encompass biomass carbon material synthesis, catalytic carbonization, pore structure engineering, and electrochemical characterization for lithium-ion and sodium-ion batteries, as well as supercapacitors. Dr. Wang continues to advance the field of biomass-derived carbon materials for energy storage, demonstrating a strong commitment to sustainable energy solutions and functional material innovation, with a documented record of 1,899 citations, 99 documents, and an h-index of 24.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

Fan, M., Yuan, Q., Zhao, Y., Wang, Z., Wang, A., Liu, Y., Sun, K., Wu, J., Wang, L., … (2022). A facile “double‐catalysts” approach to directionally fabricate pyridinic N–B‐pair‐doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient … Advanced Materials, 34(13), 2107040. Cited by 163.

Fan, M., Wang, Z., Sun, K., Wang, A., Zhao, Y., Yuan, Q., Wang, R., Raj, J., Wu, J., … (2023). N–B–OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Advanced Materials, 35(17), 2209086. Cited by 150.

Wang, A., Sun, K., Xu, R., Sun, Y., Jiang, J. (2021). Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. Journal of Cleaner Production, 283, 125385. Cited by 118.

Chen, C., Sun, K., Huang, C., Yang, M., Fan, M., Wang, A., Zhang, G., Li, B., Jiang, J., … (2023). Investigation on the mechanism of structural reconstruction of biochars derived from lignin and cellulose during graphitization under high temperature. Biochar, 5(1), 51. Cited by 66.

Cao, M., Liu, Y., Sun, K., Li, H., Lin, X., Zhang, P., Zhou, L., Wang, A., Mehdi, S., … (2022). Coupling Fe3C nanoparticles and N‐doping on wood-derived carbon to construct reversible cathode for Zn–Air batteries. Small, 18(26), 2202014. Cited by 58.

 

Miftah Fekadu Kedir | Bioenergy | Best Researcher Award

Dr. Miftah Fekadu Kedir | Bioenergy | Best Researcher Award

Researcher | Ethiopian Forestry Development | Ethiopia

Dr. Miftah Fekadu Kedir, a distinguished researcher at Ethiopian Forestry Development, holds a Ph.D. in Bioenergy Development and Climate Change, an M.Sc. in Tropical Forestry, and a B.Sc. in General Forestry. With extensive experience in socio-economic and policy impact assessment, climate innovation, sustainable renewable energies, and carbon management, he has significantly contributed to Ethiopia’s green energy and climate adaptation initiatives. Dr. Kedir has led and coordinated national and international projects, including the National Industrial Forest Plantation Project, the National Climate Change Adaptation Research Division, and collaborative work with the African Forest Forum, DAAD, SNV, and the Barr Foundation (USA). His research focuses on bioenergy, improved biomass cookstoves, biogas, liquid biofuels, carbon storage, and greenhouse gas emission measurement, integrating policy, technological innovation, and socio-economic assessment. He has published 22 peer-reviewed articles in reputed journals such as Frontiers in Environmental Science, JAEID, Bionatura, and Sustainable Forestry, authored one book (ISBN: 978-3-659-56185-6), and contributed to multiple consultancy and industry projects on biogas, biofuels, and cookstoves. His work has demonstrated measurable impacts on indoor air quality, carbon emissions, deforestation, and sustainable energy adoption, while identifying key challenges in liquid biofuel production and policy implementation. As a mentor and educator, he has guided students in ATVET colleges and promoted capacity-building in forestry and renewable energy sectors. Dr. Kedir is a member of professional organizations including the African Forest Forum, Association of Ethiopian Soil Society, and AEGE, reflecting his commitment to advancing research and knowledge exchange. His growing academic impact is reflected in 22 citations by 22 documents, 2 indexed publications, and an h-index of 2, demonstrating his significant and sustained influence on bioenergy and climate change research.

Profiles: Google Scholar | ScopusORCID

Featured Publications

1. Miftah, F. K., & Mutta, D. (2024). Potential markets and policies for sustainable liquid biofuel production with emphasis to Eastern Africa countries: A review. Energy, Sustainability and Society, 14(1), 1. (Citations: 15)

2. Kedir, M. F., Onchieku, M. J., Ntalikwa, J. S., & Mutta, D. (2022). Developing circular economy in Eastern Africa through liquid biofuels: Cases of Ethiopia, Kenya and Tanzania. African Forest Forum, 5. (Citations: 5)

3. Kedir, M. F. (2021). Pyrolysis bio-oil and bio-char production from firewood tree species for energy and carbon storage in rural wooden houses of southern Ethiopia. In African handbook of climate change adaptation (pp. 1313–1329). (Citations: 5)

4. Fekadu, M., Mekonnen, Z., & Tesfaye, M. (2021). Comparison of kitchen performance test on firewood consumption and emission of improved mirt and traditional three stone open cook stoves in Amaya, and Bure districts of Ethiopia. Climate Change, 7(23), 1–10. (Citations: 3)

5. Kedir, M. F. (2023). Prospects for rural transformation and socioenvironmental dilemma in the production and uses of liquid biofuels in Eastern Africa countries. In Rural Areas–Development and Transformations. (Citations: 2)