Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Dr. Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Doctor | Air Force Engineering University | China

Dr. Zhenghao Yang is a distinguished researcher at the Air Force Engineering University, Xi’an, China, specializing in advanced combustion systems, energy conversion efficiency, and sustainable propulsion technologies. With 16 publications, 113 citations, and an h-index of 6, he has established a growing academic presence in renewable and green energy research. His work focuses on optimizing combustion and energy conversion mechanisms under specialized and extreme operating conditions, particularly for high-altitude applications in aerospace systems. A notable example of his research is the study titled “Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel” (Renewable Energy, 2026), which exemplifies his innovative efforts in integrating hydrogen-based propulsion technologies as sustainable alternatives to traditional fossil-fuel engines. His expertise encompasses computational fluid dynamics (CFD), thermodynamic modeling, performance optimization, and hybrid energy system integration, contributing to advancements in energy efficiency and emission reduction. Collaborating with 18 co-authors across various institutions, Dr. Yang demonstrates strong interdisciplinary engagement that connects mechanical engineering, renewable energy, and environmental sustainability. His research holds significant relevance for both aviation and defense sectors, addressing global challenges related to clean energy utilization, decarbonization, and eco-efficient propulsion. Through his continued exploration of hydrogen-fueled engines and high-performance energy systems, Dr. Zhenghao Yang contributes meaningfully to the worldwide transition toward sustainable energy technologies and low-carbon innovation, positioning himself as a promising leader in the field of green propulsion research.

Profile: Scopus | ORCID | ResearchGate

Featured Publications

1. Yang, Z., Jia, G., Fang, Z., Du, Y., He, G., & Wang, Z. (2026). Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel. Renewable Energy.

2. Yang, Z., Du, Y., Jia, G., Gao, X., Fang, Z., He, G., & Wang, Z. (2025). Clean combustion of a hydrogen-doped elliptical rotary engine based on turbulent jet ignition: Synergistic enhancement of thermodynamic and emission performance via flow field coupling. Energy Conversion and Management.

3. Yang, Z., Du, Y., Jia, G., Gao, X., He, G., & Wang, Z. (2025). Effect of multi-hole passive jet ignition on thermodynamic and combustion characteristics of hydrogen-doping elliptical rotary engine in high-altitude environment. Energy.

4. Yang, Z., Jia, G., Du, Y., Fang, Z., Gao, X., He, G., & Wang, Z. (2025). Investigation of high-tumble chamber of ammonia-hydrogen fueled elliptical rotary engine based on turbulence and combustion characteristics. Fuel.

5. Du, Y., Yang, Z., Zhang, Z., Wang, Z., He, G., Wang, J., & Zhao, P. (2024). Control strategy optimization exploration of a novel hydrogen-fed high-efficiency X-type rotary engine hybrid power system by coupling with recuperative organic Rankine cycle. Energy.

Dr. Zhenghao Yang’s research advances the development of clean, high-efficiency hydrogen-fueled rotary engines, contributing to global decarbonization, sustainable aviation, and next-generation propulsion technologies. His innovative work bridges energy science and engineering, fostering breakthroughs that support a greener and more energy-efficient future for society and industry alike.

Carolina Santamarta | Carbon Neutral Technologies | Women Researcher Award

Ms. Carolina Santamarta | Carbon Neutral Technologies | Women Researcher Award

PHD student at Universidad Politécnica de Madrid | Spain

Carolina Santamarta is an accomplished industrial engineer with a diverse career spanning engineering, management, and renewable energy research. She has successfully transitioned from leading businesses in tourism, health, and education to re-engaging in advanced research within the industrial and renewable energy sectors. Her work reflects a balance between academic rigor and practical application, as she integrates her background in industrial operations with a focus on sustainable energy solutions. As a researcher, she is deeply committed to the study of renewable fuels and innovative approaches to energy generation, seeking to contribute toward global clean energy transitions. In addition to her academic pursuits, she has demonstrated strong leadership through business ownership, project management, and STEM education initiatives for children, reflecting her broader vision of contributing both to scientific progress and social development. Her adaptability, entrepreneurial mindset, and research focus make her a dynamic figure in the renewable energy field.

Professional Profile 

ORCID Profile 

Education

Carolina’s academic journey demonstrates her dedication to engineering and sustainable development. She earned her degree in Industrial Engineering at Universidad Carlos III Madrid, where she gained expertise in materials science, mechanical systems, and industrial processes. Building upon this strong foundation, she later pursued a Master’s in Renewable Energies, which allowed her to expand her knowledge into sustainable technologies such as solar, wind, and biomass energy systems. Currently, she is engaged in doctoral research in renewable fuels, an area of growing global importance. Her Ph.D. work integrates applied engineering with environmental sustainability, with the goal of advancing innovative and practical energy solutions. Throughout her education, Carolina has complemented her formal studies with hands-on use of advanced tools like Pvsyst and CHEQ4, enabling accurate modeling and evaluation of renewable energy projects. Her academic progression highlights both intellectual rigor and a clear focus on addressing real-world sustainability challenges through advanced research.

Experience

Carolina brings a wealth of professional experience that spans industrial manufacturing, entrepreneurship, and educational innovation. Early in her career, she contributed to leading industrial companies, managing machinery maintenance, manufacturing processes, and continuous improvement teams in fiberglass factories. These roles equipped her with strong technical expertise and an understanding of quality control in large-scale operations. Later, she moved into business leadership, where she managed and co-owned organizations in healthcare and tourism, overseeing budgets, human resources, and organizational strategy. Her role at Tesla Cool Lab further demonstrated her ability to connect technology with education by developing scientific and technological programs for children, fostering early interest in STEM fields. This breadth of experience reflects her ability to integrate managerial and technical expertise, balancing industrial problem-solving with entrepreneurial innovation. Her career trajectory illustrates her adaptability and her commitment to applying engineering knowledge across different industries while aligning with her growing research ambitions.

Research Interest

Carolina’s research interests lie primarily in renewable energy, with a focus on renewable fuels and their role in enabling sustainable energy transitions. She is particularly interested in developing and optimizing energy systems that integrate solar, wind, and biomass resources, with an emphasis on clean fuel technologies that can serve as viable alternatives to fossil fuels. Her work is aimed at bridging the gap between industrial-scale applications and academic innovation, seeking solutions that are not only technically efficient but also economically and environmentally viable. In addition, she is passionate about exploring tools and modeling techniques that allow accurate forecasting and evaluation of renewable energy projects, ensuring reliability and scalability. Carolina’s research vision also includes contributing to the development of community-based and decentralized energy solutions, promoting accessibility and resilience in energy systems. By aligning her technical expertise with sustainability goals, she strives to support global efforts toward climate change mitigation.

Awards and Honors

Carolina has earned recognition for her leadership and innovative contributions across different fields, blending her engineering background with business success and social engagement. Her achievements include directing successful companies in healthcare and tourism, where she demonstrated strong entrepreneurial leadership and effective resource management. Her initiative in founding Tesla Cool Lab has been widely appreciated for advancing STEM education among young learners, nurturing the next generation of scientists and engineers. In the industrial sector, she has been acknowledged for her ability to lead continuous improvement processes, enhance production efficiency, and uphold high standards of quality control. These accomplishments underscore her capability to excel in diverse professional environments while maintaining a commitment to innovation and social responsibility. Her transition into advanced renewable energy research further highlights her perseverance and dedication to professional growth, reflecting an inspiring career path that combines scientific advancement with meaningful societal impact.

Research Skills

Carolina possesses a robust set of research skills that integrate her industrial background with advanced knowledge in renewable energy technologies. She is proficient in using specialized tools such as Pvsyst and CHEQ4 for solar and wind resource evaluation, alongside online platforms for assessing hydrological and renewable potential. These technical abilities enable her to conduct comprehensive analyses and design energy systems with precision. In addition to her technical expertise, she brings strong project management skills, having managed complex budgets, human resources, and continuous improvement initiatives in industrial and business contexts. Her multilingual abilities allow her to effectively collaborate on international research projects, while her leadership experience equips her to guide teams toward achieving research objectives. Carolina’s skills also extend to bridging academic research with applied practice, ensuring her work has real-world impact. This combination of analytical rigor, technical expertise, and leadership makes her well-suited for interdisciplinary renewable energy research.

Publication Top Notes

Title: Decentralized Model for Sustainable Aviation Fuel (SAF) Production from Residual Biomass Gasification in Spain
Authors: Carolina Santamarta Ballesteros; David Bolonio; María-Pilar Martínez-Hernando; David León; Enrique García-Franco; María-Jesús García-Martínez
Year: 2025
Journal: Resources (Published by Multidisciplinary Digital Publishing Institute)

Conclusion

Carolina Santamarta is a deserving candidate for the Women Researcher Award due to her unique blend of industrial engineering expertise, renewable energy research, and leadership across multiple sectors. Her commitment to advancing sustainable energy solutions, combined with her entrepreneurial drive and community-building efforts, reflects both academic promise and societal impact. With her ongoing Ph.D. research in renewable fuels and her proven capacity for leadership and innovation, she is well-positioned to make significant contributions to the renewable energy sector and inspire future generations of women in science and engineering.