Abdullateef Mustapha | Climate Change | Best Researcher Award

Dr. Abdullateef Mustapha | Climate Change | Best Researcher Award

General Manager | Ammam Rice Mill | Nigeria

Dr. AbdulAteef Mustapha is a multidisciplinary scholar in Food Science and Engineering whose work advances innovative technologies in food processing, preservation, food microbiology, lipidomics, and sustainable utilization of agri-food by-products. His research emphasizes ultrasound-assisted processing, microbial inactivation kinetics, quality enhancement, nutrient retention, and green-processing methods that support safer and more efficient food systems. With a strong record of publications in high-impact journals, his contributions span areas such as polysaccharide extraction, protein modification, kinetic modelling, intelligent processing systems, and quality-prediction frameworks. He collaborates widely with researchers across continents, integrating advanced analytical techniques, experimental design, data modelling, and processing equipment optimization to address global challenges in food safety, postharvest losses, and nutrient-dense product development. His applied research also extends to process optimization, technology translation, quality improvement, and product innovation, resulting in practical impacts on food production efficiency, safety management, and value addition. Beyond research, he contributes to community-oriented initiatives supporting food security, public awareness, and educational development. Dr. Mustapha’s academic influence and research productivity are reflected in his metrics 918 citations, 29 documents, and an h-index of 17 underscoring his growing contributions to global food science and engineering research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Osae, R., Zhou, C., Xu, B., Tchabo, W., Tahir, H. E., Mustapha, A. T., & Ma, H. (2019). Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant properties. Journal of Food Biochemistry, 43(5), e12832.

2. Nasiru, M. M., Frimpong, E. B., Muhammad, U., Qian, J., Mustapha, A. T., Yan, W., … & Xu, B. (2021). Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2626–2659.

3. Ji, Q., Yu, X., Yagoub, A. E. A., Chen, L., Mustapha, A. T., & Zhou, C. (2021). Enhancement of lignin removal and enzymolysis of sugarcane bagasse by ultrasound-assisted ethanol synergized deep eutectic solvent pretreatment. Renewable Energy, 172, 304–316.

4. Ji, Q., Yu, X., Wu, P., Yagoub, A. E. A., Chen, L., Taiye, M. A., & Zhou, C. (2021). Pretreatment of sugarcane bagasse with deep eutectic solvents affects the structure and morphology of lignin. Industrial Crops and Products, 173, 114108.

5. Fakayode, O. A., Aboagarib, E. A. A., Yan, D., Li, M., Wahia, H., Mustapha, A. T., … & Ma, H. (2020). Novel two-pot ultrasonication and deep eutectic solvent pretreatment approaches for watermelon rind delignification: Parametric screening and optimization via response surface methodology. Energy, 203, 117872.

Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Dr. Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Doctor | Air Force Engineering University | China

Dr. Zhenghao Yang is a distinguished researcher at the Air Force Engineering University, Xi’an, China, specializing in advanced combustion systems, energy conversion efficiency, and sustainable propulsion technologies. With 16 publications, 113 citations, and an h-index of 6, he has established a growing academic presence in renewable and green energy research. His work focuses on optimizing combustion and energy conversion mechanisms under specialized and extreme operating conditions, particularly for high-altitude applications in aerospace systems. A notable example of his research is the study titled “Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel” (Renewable Energy, 2026), which exemplifies his innovative efforts in integrating hydrogen-based propulsion technologies as sustainable alternatives to traditional fossil-fuel engines. His expertise encompasses computational fluid dynamics (CFD), thermodynamic modeling, performance optimization, and hybrid energy system integration, contributing to advancements in energy efficiency and emission reduction. Collaborating with 18 co-authors across various institutions, Dr. Yang demonstrates strong interdisciplinary engagement that connects mechanical engineering, renewable energy, and environmental sustainability. His research holds significant relevance for both aviation and defense sectors, addressing global challenges related to clean energy utilization, decarbonization, and eco-efficient propulsion. Through his continued exploration of hydrogen-fueled engines and high-performance energy systems, Dr. Zhenghao Yang contributes meaningfully to the worldwide transition toward sustainable energy technologies and low-carbon innovation, positioning himself as a promising leader in the field of green propulsion research.

Profile: Scopus | ORCID | ResearchGate

Featured Publications

1. Yang, Z., Jia, G., Fang, Z., Du, Y., He, G., & Wang, Z. (2026). Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel. Renewable Energy.

2. Yang, Z., Du, Y., Jia, G., Gao, X., Fang, Z., He, G., & Wang, Z. (2025). Clean combustion of a hydrogen-doped elliptical rotary engine based on turbulent jet ignition: Synergistic enhancement of thermodynamic and emission performance via flow field coupling. Energy Conversion and Management.

3. Yang, Z., Du, Y., Jia, G., Gao, X., He, G., & Wang, Z. (2025). Effect of multi-hole passive jet ignition on thermodynamic and combustion characteristics of hydrogen-doping elliptical rotary engine in high-altitude environment. Energy.

4. Yang, Z., Jia, G., Du, Y., Fang, Z., Gao, X., He, G., & Wang, Z. (2025). Investigation of high-tumble chamber of ammonia-hydrogen fueled elliptical rotary engine based on turbulence and combustion characteristics. Fuel.

5. Du, Y., Yang, Z., Zhang, Z., Wang, Z., He, G., Wang, J., & Zhao, P. (2024). Control strategy optimization exploration of a novel hydrogen-fed high-efficiency X-type rotary engine hybrid power system by coupling with recuperative organic Rankine cycle. Energy.

Dr. Zhenghao Yang’s research advances the development of clean, high-efficiency hydrogen-fueled rotary engines, contributing to global decarbonization, sustainable aviation, and next-generation propulsion technologies. His innovative work bridges energy science and engineering, fostering breakthroughs that support a greener and more energy-efficient future for society and industry alike.