Abdullateef Mustapha | Climate Change | Best Researcher Award

Dr. Abdullateef Mustapha | Climate Change | Best Researcher Award

General Manager | Ammam Rice Mill | Nigeria

Dr. AbdulAteef Mustapha is a multidisciplinary scholar in Food Science and Engineering whose work advances innovative technologies in food processing, preservation, food microbiology, lipidomics, and sustainable utilization of agri-food by-products. His research emphasizes ultrasound-assisted processing, microbial inactivation kinetics, quality enhancement, nutrient retention, and green-processing methods that support safer and more efficient food systems. With a strong record of publications in high-impact journals, his contributions span areas such as polysaccharide extraction, protein modification, kinetic modelling, intelligent processing systems, and quality-prediction frameworks. He collaborates widely with researchers across continents, integrating advanced analytical techniques, experimental design, data modelling, and processing equipment optimization to address global challenges in food safety, postharvest losses, and nutrient-dense product development. His applied research also extends to process optimization, technology translation, quality improvement, and product innovation, resulting in practical impacts on food production efficiency, safety management, and value addition. Beyond research, he contributes to community-oriented initiatives supporting food security, public awareness, and educational development. Dr. Mustapha’s academic influence and research productivity are reflected in his metrics 918 citations, 29 documents, and an h-index of 17 underscoring his growing contributions to global food science and engineering research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Osae, R., Zhou, C., Xu, B., Tchabo, W., Tahir, H. E., Mustapha, A. T., & Ma, H. (2019). Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant properties. Journal of Food Biochemistry, 43(5), e12832.

2. Nasiru, M. M., Frimpong, E. B., Muhammad, U., Qian, J., Mustapha, A. T., Yan, W., … & Xu, B. (2021). Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2626–2659.

3. Ji, Q., Yu, X., Yagoub, A. E. A., Chen, L., Mustapha, A. T., & Zhou, C. (2021). Enhancement of lignin removal and enzymolysis of sugarcane bagasse by ultrasound-assisted ethanol synergized deep eutectic solvent pretreatment. Renewable Energy, 172, 304–316.

4. Ji, Q., Yu, X., Wu, P., Yagoub, A. E. A., Chen, L., Taiye, M. A., & Zhou, C. (2021). Pretreatment of sugarcane bagasse with deep eutectic solvents affects the structure and morphology of lignin. Industrial Crops and Products, 173, 114108.

5. Fakayode, O. A., Aboagarib, E. A. A., Yan, D., Li, M., Wahia, H., Mustapha, A. T., … & Ma, H. (2020). Novel two-pot ultrasonication and deep eutectic solvent pretreatment approaches for watermelon rind delignification: Parametric screening and optimization via response surface methodology. Energy, 203, 117872.

Brenda Yanin Azcárraga Salinas | Bioenergy | Best Researcher Award

Prof. Brenda Yanin Azcárraga Salinas | Bioenergy | Best Researcher Award

PhD student | Instituto Politécnico Nacional | Mexico

Dr. Brenda Yanin Azcárraga Salinas is a distinguished biotechnology researcher specializing in microalgal bioprocesses, environmental biotechnology, and the circular bioeconomy. Her work focuses on transforming agro-industrial and livestock residues into biodiesel, bioactive compounds, and biostimulants, contributing to sustainable energy production and waste valorization. With a strong foundation in analytical chemistry and applied biotechnology, she combines precision in techniques such as HPLC, GC-MS, FTIR, and UV-Vis spectroscopy with innovative approaches to green process design. Her research explores the production of value-added compounds from Scenedesmus obliquus and Chlorella vulgaris cultivated in organic waste-based media, the generation of phytohormones through anaerobic digestion, and the development of biofertilizers derived from microalgal biomass. She has authored and co-authored multiple peer-reviewed publications on renewable bioenergy, green chemistry, and sustainable agriculture, collaborating with national and institutional research networks to advance environmental biotechnology and clean energy innovations. Through her interdisciplinary work, she promotes the development of circular, low-carbon solutions aligned with global sustainability goals. Dr. Azcárraga’s academic excellence and research influence are reflected in her growing global recognition, with 1,117 citations, 33 publications, and an h-index of 9, underscoring her impactful contributions to the advancement of environmental biotechnology and circular bioeconomy.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate 

Featured Publications

1. Solís, M., Solís, A., Pérez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: A review. Process Biochemistry, 47(12), 1723–1748. Cited by: 1,026

2. Butrón, E., Juárez, M. E., Solis, M., Teutli, M., González, I., & Nava, J. L. (2007). Electrochemical incineration of indigo textile dye in filter-press-type FM01-LC electrochemical cell using BDD electrodes. Electrochimica Acta, 52(24), 6888–6894. Cited by: 101

3. Solís-Oba, M., Ugalde-Saldívar, V. M., González, I., & Viniegra-González, G. (2005). An electrochemical–spectrophotometrical study of the oxidized forms of the mediator 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) produced by immobilized laccase. Journal of Electroanalytical Chemistry, 579(1), 59–66. Cited by: 97

4. Solís-Oba, M., Teniza-García, O., Rojas-López, M., & Delgado-Macuil, R. (2011). Application of infrared spectroscopy to the monitoring of lactose and protein from whey after ultra and nano filtration process. Journal of the Mexican Chemical Society, 55(3), 190–193. Cited by: 37

5. Castro Rivera, R., Solís Oba, M. M., Chicatto Gasperín, V., & Solís Oba, A. (2020). Producción de biogás mediante codigestión de estiércol bovino y residuos de cosecha de tomate (Solanum lycopersicum L.). Revista Internacional de Contaminación Ambiental, 36(3), 529–539. Cited by: 34

Dr. Brenda Yanin Azcárraga Salinas advances sustainable biotechnology by transforming organic waste into renewable energy and high-value bioproducts, fostering circular bioeconomy solutions that mitigate environmental impact. Her research bridges science and industry, driving global innovation in green technologies and sustainable resource management.

Wanxuan Yao | Climate change mitigation technologies | Best Researcher Award

Dr. Wanxuan Yao | Climate change mitigation technologies | Best Researcher Award

Researcher | GEOMAR Helmholtz Centre for Ocean Research Kiel | Germany

Dr. Ben Wanxuan Yao is an accomplished climate scientist specializing in biogeochemical modelling, carbon dioxide removal (CDR), and carbon capture and storage (CCS). His research integrates modelling, data analysis, and environmental assessment to evaluate the technical feasibility, effectiveness, and societal implications of carbon mitigation technologies. With extensive experience in developing CDR evaluation frameworks, he has advanced the global understanding of marine-based carbon removal and its integration within policy and sustainability contexts. He has led multidisciplinary research initiatives focused on site-specific CDR and CCS portfolio development, aligning scientific innovation with national and international climate goals. His work encompasses quantitative modelling of oceanic carbon and nutrient cycles, AI-based parameter calibration on high-performance computing systems, and holistic assessments of carbon sequestration techniques. His findings have been published in leading international journals, including Geophysical Research Letters, Earth’s Future, Environmental Research Letters, and Global Change Biology, providing critical insights into the environmental, economic, and ethical dimensions of marine carbon removal technologies. Beyond research, he has played a key role in facilitating collaboration between scientists, policymakers, and industry through workshops, think tanks, and conferences, strengthening the interface between science and decision-making in the field of climate solutions. His expertise in geospatial data analysis, system modelling, and sustainable innovation has positioned him as a valuable contributor to the evolving landscape of carbon management and environmental strategy. Dr. Yao’s academic excellence and research influence are reflected in his growing global recognition, with 67 citations, 8 publications, and an h-index of 5, underscoring his impactful contributions to the advancement of climate modelling and carbon removal science.

Featured Publications

1. Somes, C. J., Dale, A. W., Wallmann, K., Scholz, F., Yao, W., Oschlies, A., Muglia, J., & Achterberg, E. P. (2021). Constraining global marine iron sources and ligand‐mediated scavenging fluxes with GEOTRACES dissolved iron measurements in an ocean biogeochemical model. Global Biogeochemical Cycles, 35(8), e2021GB006948. Cited by: 30

2. Frenger, I., Landolfi, A., Kvale, K., Somes, C. J., Oschlies, A., Yao, W., & Koeve, W. (2024). Misconceptions of the marine biological carbon pump in a changing climate: Thinking outside the “export” box. Global Change Biology, 30(1), e17124. Cited by: 27

3. Yao, W., Kvale, K. F., Achterberg, E., Koeve, W., & Oschlies, A. (2019). Hierarchy of calibrated global models reveals improved distributions and fluxes of biogeochemical tracers in models with explicit representation of iron. Environmental Research Letters, 14(11), 114009. Cited by: 15

4. Kvale, K., Keller, D. P., Koeve, W., Meissner, K. J., Somes, C. J., Yao, W., & Oschlies, A. (2020). Explicit silicate cycling in the Kiel Marine Biogeochemistry Model, version 3 (KMBM3) embedded in the UVic ESCM version 2.9. Geoscientific Model Development Discussions, 1–46.Cited by: 10

5. Yao, W., Kvale, K. F., Koeve, W., Landolfi, A., Achterberg, E., Bertrand, E. M., & Oschlies, A. (2022). Simulated future trends in marine nitrogen fixation are sensitive to model iron implementation. Global Biogeochemical Cycles, 36(3), e2020GB006851. Cited by: 6

Dr. Wanxuan Yao’s work advances global climate solutions by integrating biogeochemical modelling with carbon removal science, enhancing the precision of Earth system projections and guiding sustainable carbon management strategies for policymakers and industry. His research bridges scientific innovation and environmental governance, driving impactful progress toward a low-carbon, resilient future.

Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Mr. Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Lecturer and Bioenergy research group coordinator | Bahir Dar University | Ethiopia

Mr. Tesfa Nega Gesese is a Lecturer and Bioenergy Research Group Coordinator at Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia, with over seven years of teaching and research experience. He holds an M.Sc. in Chemical Engineering and has built a strong academic foundation in renewable energy, waste valorisation, and greenhouse gas mitigation. His professional experience includes serving as a lecturer, course chair, and project leader, where he has coordinated large-scale research initiatives such as the mega project on integrated production of bioethanol, bio-hydrogen, and biogas from sesame stalk feedstock, as well as thematic research on computational modelling of anaerobic digestion and photosynthetic algae integration. His research interests span biomass valorisation, biofuels, pyrolysis, gasification, bio-composite materials, and sustainable energy systems. He has demonstrated advanced research skills in biomass pyrolysis kinetics, waste-to-energy conversion, and the development of renewable energy pathways tailored to local resources. Mr. Tesfa has authored and co-authored more than 15 peer-reviewed publications indexed in Scopus and Web of Science, focusing on biomass conversion technologies, bio-based materials, and environmental sustainability. His leadership role as a bioenergy research coordinator has enabled him to foster collaborative research, mentor young scholars, and deliver impactful solutions addressing Ethiopia’s energy challenges. He has also contributed to the scientific community as a reviewer for international journals and as a member of the Society of Ethiopian Chemical Engineers. His dedication to research excellence has earned recognition through funded research projects and academic achievements that align with global sustainability goals. Overall, Mr. Tesfa is committed to advancing bioenergy innovation, expanding international collaborations, and influencing policy toward clean energy transitions. Mr. Tesfa Nega Gesese’s growing academic impact is reflected in 26 citations, 10 documents, and an h-index of 3, demonstrating his emerging influence in the field of bioenergy and sustainable engineering.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

1. Mersha, D. A., Gesese, T. N., Sendekie, Z. B., Admase, A. T., & Bezie, A. J. (2024). Operating conditions, products and sustainable recycling routes of aminolysis of polyethylene terephthalate (PET)–A review. Polymer Bulletin, 81(13), 11563–11579. Cited by: 20

2. Bantie, Z., Tezera, A., Abera, D., & Nega, T. (2024). Nanoclays as fillers for performance enhancement in building and construction industries: State of the art and future trends. In Developments in Clay Science and Construction Techniques. Cited by: 11

3. Gesese, T. N., Fanta, S. W., Mersha, D. A., & Satheesh, N. (2022). Physical properties and antibacterial activity of cotton fabric treated with methanolic extracts of Solanum incanum fruits and red onion peels. The Journal of The Textile Institute, 113(2), 292–302. Cited by: 6

4. Gesese, T. N., Getahun, E., & Getahun, A. A. (2024). Investigation of thermal degradation properties and chemical kinetic characteristics of biomass pyrolysis via TG/DTG and FTIR techniques: Sesame stalks as a potential source. International Journal of Energy Research, 2024(1), 8891126. Cited by: 4

5. Gesese, T. N., Getahun, E., & Getahun, A. A. (2025). Pyrolysis kinetics, thermodynamics, and reaction performance of wheat straw and water hyacinth using TGA‐DTG analysis: Bioenergy potential in Ethiopia. Biofuels, Bioproducts and Biorefining, 19(3), 705–729.  Cited by: 2

 

Renjith Krishnan | Bioenergy | Young Researcher Award

Dr. Renjith Krishnan | Bioenergy | Young Researcher Award   

R&D Engineer | Nasser S. Al Hajri Corporation | United Arab Emirates

Dr. Renjith Krishnan is a distinguished mechanical engineer and educator with nearly a decade of experience in science and engineering, specializing in sustainable energy, waste management, biofuel production, lithium-ion batteries, and Industry 5.0 applications. He earned his Ph.D. in Mechanical Engineering from the National Institute of Technology Mizoram, India (2022), with a thesis on the production, characterization, and testing of bamboo biodiesel in a variable compression ratio engine. He also holds an M.Tech in Computer Integrated Manufacturing from the University of Calicut (2015) and a B.Tech in Mechanical Engineering from the University of Kerala (2013). Dr. Krishnan has served in multiple academic and industry roles, including Assistant Professor positions at Saveetha Engineering College, Madanapalle Institute of Technology & Science, and SHM Engineering College, as well as R&D Piping Engineer at Nasser S. Al Hajri Corporation, UAE. His research interests encompass biofuels, biomass gasification, lithium extraction, machine learning for sustainability, and clean energy systems. He possesses strong research skills in experimental design, process optimization, computational modeling, and data analysis using tools such as Ansys, SolidWorks, Origin, and Python. Dr. Krishnan has an impressive publication record, including Q1 and Q2 journals such as Cleaner Engineering and Technology, Energy Science & Engineering, and Environmental Science and Pollution Research, along with 14 patents in areas ranging from water flow measurement to portable air purifiers. He actively contributes to professional communities as a member of the World Society of Sustainable Energy Technologies and AICTSD and has completed certifications in AI, Python, and Product Management. Dr. Krishnan is committed to mentoring students and fostering innovation in academia and industry. He is the recipient of multiple recognitions for his teaching and research. His growing academic impact is reflected in 80 citations, 9 documents, and an h-index of 4, demonstrating his significant and sustained influence in the field of sustainable energy and mechanical engineering.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

1. Krishnan, R., & Gopan, G. (2024). A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Cleaner Engineering and Technology, 20, 100749. Cited by: 64

2. Krishnan, R., Hauchhum, L., Gupta, R., & Pattanayak, S. (2018). Prediction of equations for higher heating values of biomass using proximate and ultimate analysis. In 2nd International Conference on Power, Energy and Environment: Towards Smart Technology. IEEE.  Cited by: 28

3. Gopan, G., Hauchhum, L., Pattanayak, S., Kalita, P., & Krishnan, R. (2022). Prediction of species concentration in syngas produced through gasification of different bamboo biomasses: A numerical approach. International Journal of Energy and Environmental Engineering, 13(4), 1383–1394. Cited by: 9

4. Krishnan, R., Hauchhum, L., Gupta, R., & Gopan, G. (2022). Production and characterisation of biodiesel extracted from Indian bamboos. International Journal of Oil, Gas and Coal Technology, 31(3), 316–331. Cited by: 6

5. Gopan, G., Hauchhum, L., Kalita, P., Krishnan, R., & Pattanayak, S. (2021). Parametric study of tapered fluidized bed reactor under varied taper angle using TFM. AIP Conference Proceedings, 2396(1), 020020. Cited by: 4

 

Hongying Cai | Agri-Energy | Best Researcher Award

Assoc. Prof. Dr. Hongying Cai | Agri-Energy | Best Researcher Award

Associate Professor at Chinese Academy of Agricultural Sciences | China

Dr. Hongying Cai is a dedicated researcher in microbiology with a strong focus on probiotics and microbial applications in health and agriculture. Her work explores the mechanisms by which lactic acid bacteria influence obesity, lipid metabolism, and host health, leading to innovative approaches in microbial ecological preparations. She has successfully combined basic scientific research with practical applications, contributing to both academic knowledge and industrial development. With numerous publications in SCI-indexed journals and multiple authorized national patents, her contributions reflect originality, innovation, and societal impact. As an Associate Professor at the Chinese Academy of Agricultural Sciences, she has demonstrated leadership in significant national-level projects and contributed to technology transfer that benefits the agricultural and health sectors. Dr. Cai’s career reflects a balance of research excellence, innovation, and collaborative engagement, positioning her as an emerging leader in microbiological and biotechnological research.

Professional Profiles

Scopus Profile | ORCID Profile

Education

Dr. Cai pursued her higher education in microbiology at the Graduate School of the Chinese Academy of Agricultural Sciences, where she completed her doctoral studies with a strong focus on probiotics and metabolic regulation. During her academic journey, she acquired rigorous training in molecular biology, microbial genetics, and applied biotechnology, equipping her with both theoretical knowledge and practical expertise. Her academic foundation provided a pathway into advanced research, where she explored the interactions between microorganisms and host metabolic systems. Following her doctoral degree, she continued her academic development through a postdoctoral fellowship at the Institute of Feed Research, where she gained further exposure to interdisciplinary approaches and advanced methodologies. This educational journey strengthened her ability to address complex biological problems while cultivating a broad perspective on microbiological applications in agriculture and health sciences. Her academic background has been instrumental in shaping her current role as a leading researcher in her field.

Experience

Dr. Cai has accumulated rich professional experience in microbiology and feed research through her work at the Institute of Feed Research, Chinese Academy of Agricultural Sciences. She has undertaken extensive postdoctoral research and now serves as an Associate Professor, where she leads projects at the intersection of microbiology, biotechnology, and animal health. Her experience includes designing and executing high-impact national research projects under competitive funding programs and developing innovative microbial ecological preparations. She has successfully managed multi-disciplinary teams, coordinated with industrial partners, and facilitated technology transfer, demonstrating her ability to bridge scientific discovery with real-world application. Her leadership extends to supervising junior researchers and contributing to collaborative studies, enhancing the reach and relevance of her work. The blend of academic research and industry-linked projects has given her comprehensive expertise in both scientific innovation and practical outcomes, positioning her as an experienced researcher with strong professional impact.

Research Interest

Dr. Cai’s primary research interests center on the role of probiotics, particularly lactic acid bacteria, in regulating host metabolism and improving health outcomes. She is deeply engaged in uncovering the mechanisms through which these microorganisms influence lipid metabolism, obesity control, and glucose regulation. Her work further extends into the development of microbial ecological preparations that can be applied in both animal husbandry and human health, with a vision of improving sustainability and wellness. She has established advanced in vitro screening systems to identify promising microbial strains, offering new tools for probiotic research and development. Dr. Cai also explores the broader potential functions of beneficial microbes, seeking to integrate microbiology with biotechnology for innovative solutions. Her research contributes not only to scientific discovery but also to practical applications in agriculture, food sciences, and health care, highlighting the interdisciplinary significance of her work in addressing global challenges.

Awards and Honors

Dr. Cai has received recognition for her outstanding contributions to microbiological research, particularly in the areas of probiotics and microbial biotechnology. Her work has been supported through competitive funding programs, including prestigious national research grants, which reflect the value and impact of her scientific ideas. She has successfully completed multiple government-supported projects and contributed to advancing national research priorities. In addition to these achievements, she has secured several authorized national invention patents, which demonstrate the innovative nature of her research and its potential for practical application. Her publications in respected international journals, where she has often served as first or corresponding author, further highlight her scholarly excellence. These accomplishments collectively illustrate her ability to deliver impactful research outcomes, gain professional recognition, and contribute to both academic advancement and applied innovation. Her record of honors and achievements reflects her commitment to advancing knowledge and benefiting society.

Research Skills

Dr. Cai has developed strong research skills that combine advanced laboratory expertise, analytical ability, and leadership in scientific inquiry. She is proficient in microbiological techniques, molecular biology methods, and microbial genetic analysis, which allow her to explore the complex mechanisms of probiotic functions. Her skills extend to establishing innovative screening systems for lactic acid bacteria, enabling effective evaluation of microbial strains with potential health benefits. She is experienced in project management, having led several major research initiatives that required coordination, problem-solving, and interdisciplinary collaboration. Additionally, Dr. Cai demonstrates skill in translating laboratory discoveries into practical applications, supported by her record of patents and technology transfers. She is also adept at scientific communication, as reflected in her publications in internationally recognized journals. Her ability to integrate experimental precision, strategic project leadership, and innovation underscores her strong profile as a skilled and versatile researcher in microbiology and biotechnology.

Publication Top Notes

Title: Heat-Inactivated Lactiplantibacillus plantarum FRT4 Alleviates Diet-Induced Obesity via Gut–Liver Axis Reprogramming
Authors: Yuyin Huang; Qingya Wang; Xiling Han; Kun Meng; Guohua Liu; Haiou Zhang; Rui Zhang; Hongying Cai; Peilong Yang
Year: 2025
Journal: Foods (Multidisciplinary Digital Publishing Institute – MDPI)

Conclusion

Dr. Hongying Cai is a highly deserving candidate for the Best Researcher Award. With a strong foundation in microbiology, she has advanced the understanding of lactic acid bacteria and their role in regulating metabolism, contributing both to science and its practical applications in health and agriculture. Her significant research projects, impactful publications, patents, and dedication to technology transfer highlight her commitment to both innovation and societal benefit. With her strong research background and potential for future leadership in international collaborations, Dr. Cai stands out as a promising researcher who will continue to make substantial contributions to science and society.