Mohsin Raza | Renewable Energy | Innovation Research Award

Dr. Mohsin Raza | Renewable Energy | Innovation Research Award

Post Doctoral Research Associate | University of Sharjah | United Arab Emirates

Dr. Mohsin Raza, Ph.D., is a distinguished researcher specializing in biomass valorization, bioenergy, green chemistry, and nanocellulose production. He is currently advancing research in sustainable material science and bio-based innovations as a Postdoctoral Research Associate at a leading research institute. His academic background and scientific expertise center on transforming agricultural and lignocellulosic wastes into high-value materials through green and energy-efficient processes. Dr. Raza’s work integrates biomass conversion technologies, lignin recovery, nanocellulose extraction, and bio-based thermal insulation development, emphasizing environmental sustainability and circular economy principles. His core research skills include thermochemical processing, biopolymer synthesis, pyrolysis kinetics, and the use of natural deep eutectic solvents for eco-friendly material synthesis. Highly skilled in advanced analytical techniques such as TGA, DSC, XRD, FTIR, GC-MS, SEM, and TEM, he also demonstrates excellence in intellectual property development, holding multiple granted U.S. patents and additional applications in the fields of biomass valorization and green solvent technologies. As a prolific author with extensive publications in high-impact Q1 journals from leading publishers, Dr. Raza’s research contributions have significantly advanced understanding in renewable energy systems, sustainable chemistry, and nanomaterial engineering. His work has been recognized through multiple innovation and sustainability awards, reflecting his leadership and creativity in promoting clean technologies. Through collaborative research and continuous innovation, Dr. Raza continues to shape the future of renewable materials and sustainable energy, contributing to global progress toward a circular bioeconomy, with a documented record of 994 citations, 28 publications, and an h-index of 14.

Profile: Google Scholar | Scopus | ORCID

Featured Publications

1. Inayat, A., & Raza, M. (2019). District cooling system via renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 107, 360–373. Cited by: 221

2. Raza, M., Abu-Jdayil, B., Al-Marzouqi, A. H., & Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats–Redfern method. Renewable Energy, 183, 67–77. Cited by: 161

3. Raza, M., Inayat, A., Ahmed, A., Jamil, F., Ghenai, C., Naqvi, S. R., Shanableh, A., & Park, Y. K. (2021). Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing. Sustainability, 13(19), 11061. Cited by: 148

4. Raza, M., Abu-Jdayil, B., Banat, F., & Al-Marzouqi, A. H. (2022). Isolation and characterization of cellulose nanocrystals from date palm waste. ACS Omega, 7(29), 25366–25379. Cited by: 102

5. Raza, M., & Abu-Jdayil, B. (2022). Cellulose nanocrystals from lignocellulosic feedstock: A review of production technology and surface chemistry modification. Cellulose, 29(2), 685–722. Cited by: 77

 

Sergei Petrenko | Solar Energy | Best Researcher Award

Prof. Dr. Sergei Petrenko | Solar Energy | Best Researcher Award

Sirius University of Science and Technology | Russia

Prof. Sergei Petrenko, born in 1968 in Kaliningrad (the Baltic), is a distinguished Doctor of Technical Sciences and Professor at Sirius University, Russia, recognized for his extensive contributions to information security and digital technologies. He graduated with honors in 1991 from Leningrad State University with a degree in mathematics and engineering, laying a solid foundation for his academic and professional journey. Over the years, Prof. Petrenko has designed and implemented critical information systems for numerous national and corporate projects, including three national Situational-Crisis Centers (RCCs), three operators of special information services (MSSP and MDR), two virtual trusted communication operators (MVNO), more than ten segments of the System for Detection, Prevention, and Elimination of the Effects of Computer Attacks (SOPCA) and the System for Detection and Prevention of Computer Attacks (SPOCA), as well as five monitoring centers for information security threats and response, including CERT, CSIRT, and two industrial CERTs for IIoT/IoT environments. His research interests encompass information security, big data technologies, cloud security, corporate and industrial Internet protection, and innovative digital economy solutions. Prof. Petrenko possesses advanced research skills in auditing corporate cybersecurity, risk management, security policy formulation, and developing methods and technologies to safeguard critical national infrastructure. He has authored and co-authored 14 monographs and practical manuals published by Springer Nature Switzerland AG, River Publishers, Peter, Athena, and DMK-Press, including works such as “Big Data Technologies for Monitoring,” “Innovation for the Digital Economy,” and “Methods and Technologies of Cloud Security,” alongside over 350 articles in leading journals and conference proceedings. His exceptional contributions to national projects have earned him the prestigious “Big ZUBR” and “Golden ZUBR” awards. Prof. Petrenko continues to lead the State Scientific School, advancing both applied and theoretical research in information security, fostering innovation, and mentoring the next generation of cybersecurity experts, with a documented record of 296 citations, 55 documents, and an h-index of 10.

Profiles: Google Scholar | Scopus| ORCID

Featured Publications

1. Balyabin, A. A., & Petrenko, S. A. (2025). Model of a blockchain platform with cyber-immunity under quantum attacks. Voprosy kiberbezopasnosti, (3), 72-82.

2. Balyabin, A., & Petrenko, S. (2025). Methodology for synthesizing quantum-resistant blockchain platforms with cyber-immunity. Voprosy kiberbezopasnosti, (4), 46-54.

3. Buchatskiy, P., Onishchenko, S., Petrenko, S., & Teploukhov, S. (2025). Methodology for assessing the technical potential of solar energy based on artificial intelligence technologies and simulation-modeling tools. Energies.

4. Olifirov, A. V., Makoveichuk, K., & Petrenko, S. (2025). Research of aspects of omnicanal approach in the industry of digital learning technologies of organizations. In [Book Title], Springer Nature Switzerland AG (Chapter).

5. Petrenko, S. A., & Alexei Petrenko. (2023). Basic Algorithms Quantum Cryptanalysis. Voprosy kiberbezopasnosti, (1), 100-115.