Ao Wang | Biomass | Best Researcher Award

Dr. Ao Wang | Biomass | Best Researcher Award

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry | China

Dr. Ao Wang is an Associate Research Fellow at the Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF) and currently serves as a visiting scholar at Nanyang Technological University, fostering international research collaborations. His professional expertise centers on the preparation and application of advanced functional carbon materials derived from biomass, with a particular focus on electrochemical energy storage. He has led major research projects, including national key programs and fundamental research initiatives at CAF. Dr. Wang’s contributions include elucidating the evolution mechanism of carbon microcrystals during lignin and cellulose pyrolysis, demonstrating that the isotropy of carbon crystal seeds drives the ordered growth of graphite-like microcrystals, and revealing the critical influence of catalyst-induced pore sizes on the formation of closed pore structures in energy storage carbon materials. He has published over 30 articles in high-impact journals such as Progress in Materials Science, Advanced Functional Materials, and Carbon Energy, and has been granted 8 invention patents. His research skills encompass biomass carbon material synthesis, catalytic carbonization, pore structure engineering, and electrochemical characterization for lithium-ion and sodium-ion batteries, as well as supercapacitors. Dr. Wang continues to advance the field of biomass-derived carbon materials for energy storage, demonstrating a strong commitment to sustainable energy solutions and functional material innovation, with a documented record of 1,899 citations, 99 documents, and an h-index of 24.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

Fan, M., Yuan, Q., Zhao, Y., Wang, Z., Wang, A., Liu, Y., Sun, K., Wu, J., Wang, L., … (2022). A facile “double‐catalysts” approach to directionally fabricate pyridinic N–B‐pair‐doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient … Advanced Materials, 34(13), 2107040. Cited by 163.

Fan, M., Wang, Z., Sun, K., Wang, A., Zhao, Y., Yuan, Q., Wang, R., Raj, J., Wu, J., … (2023). N–B–OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Advanced Materials, 35(17), 2209086. Cited by 150.

Wang, A., Sun, K., Xu, R., Sun, Y., Jiang, J. (2021). Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. Journal of Cleaner Production, 283, 125385. Cited by 118.

Chen, C., Sun, K., Huang, C., Yang, M., Fan, M., Wang, A., Zhang, G., Li, B., Jiang, J., … (2023). Investigation on the mechanism of structural reconstruction of biochars derived from lignin and cellulose during graphitization under high temperature. Biochar, 5(1), 51. Cited by 66.

Cao, M., Liu, Y., Sun, K., Li, H., Lin, X., Zhang, P., Zhou, L., Wang, A., Mehdi, S., … (2022). Coupling Fe3C nanoparticles and N‐doping on wood-derived carbon to construct reversible cathode for Zn–Air batteries. Small, 18(26), 2202014. Cited by 58.

 

Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Mr. Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Lecturer and Bioenergy research group coordinator | Bahir Dar University | Ethiopia

Mr. Tesfa Nega Gesese is a Lecturer and Bioenergy Research Group Coordinator at Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia, with over seven years of teaching and research experience. He holds an M.Sc. in Chemical Engineering and has built a strong academic foundation in renewable energy, waste valorisation, and greenhouse gas mitigation. His professional experience includes serving as a lecturer, course chair, and project leader, where he has coordinated large-scale research initiatives such as the mega project on integrated production of bioethanol, bio-hydrogen, and biogas from sesame stalk feedstock, as well as thematic research on computational modelling of anaerobic digestion and photosynthetic algae integration. His research interests span biomass valorisation, biofuels, pyrolysis, gasification, bio-composite materials, and sustainable energy systems. He has demonstrated advanced research skills in biomass pyrolysis kinetics, waste-to-energy conversion, and the development of renewable energy pathways tailored to local resources. Mr. Tesfa has authored and co-authored more than 15 peer-reviewed publications indexed in Scopus and Web of Science, focusing on biomass conversion technologies, bio-based materials, and environmental sustainability. His leadership role as a bioenergy research coordinator has enabled him to foster collaborative research, mentor young scholars, and deliver impactful solutions addressing Ethiopia’s energy challenges. He has also contributed to the scientific community as a reviewer for international journals and as a member of the Society of Ethiopian Chemical Engineers. His dedication to research excellence has earned recognition through funded research projects and academic achievements that align with global sustainability goals. Overall, Mr. Tesfa is committed to advancing bioenergy innovation, expanding international collaborations, and influencing policy toward clean energy transitions. Mr. Tesfa Nega Gesese’s growing academic impact is reflected in 26 citations, 10 documents, and an h-index of 3, demonstrating his emerging influence in the field of bioenergy and sustainable engineering.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

1. Mersha, D. A., Gesese, T. N., Sendekie, Z. B., Admase, A. T., & Bezie, A. J. (2024). Operating conditions, products and sustainable recycling routes of aminolysis of polyethylene terephthalate (PET)–A review. Polymer Bulletin, 81(13), 11563–11579. Cited by: 20

2. Bantie, Z., Tezera, A., Abera, D., & Nega, T. (2024). Nanoclays as fillers for performance enhancement in building and construction industries: State of the art and future trends. In Developments in Clay Science and Construction Techniques. Cited by: 11

3. Gesese, T. N., Fanta, S. W., Mersha, D. A., & Satheesh, N. (2022). Physical properties and antibacterial activity of cotton fabric treated with methanolic extracts of Solanum incanum fruits and red onion peels. The Journal of The Textile Institute, 113(2), 292–302. Cited by: 6

4. Gesese, T. N., Getahun, E., & Getahun, A. A. (2024). Investigation of thermal degradation properties and chemical kinetic characteristics of biomass pyrolysis via TG/DTG and FTIR techniques: Sesame stalks as a potential source. International Journal of Energy Research, 2024(1), 8891126. Cited by: 4

5. Gesese, T. N., Getahun, E., & Getahun, A. A. (2025). Pyrolysis kinetics, thermodynamics, and reaction performance of wheat straw and water hyacinth using TGA‐DTG analysis: Bioenergy potential in Ethiopia. Biofuels, Bioproducts and Biorefining, 19(3), 705–729.  Cited by: 2

 

Valeria Cafaro | Bioenergy | Best Researcher Award

Dr. Valeria Cafaro | Bioenergy | Best Researcher Award

Post – Doc researcher | National Research Council of Italy – Institute of BioEconomy| Italy

Dr. Valeria Cafaro is a dedicated Post-Doctoral Researcher at the National Research Council of Italy – Institute of BioEconomy (CNR–IBE), Catania, Sicily, specializing in crop physiology, sustainable agronomic practices, and genetic improvement of Mediterranean crops under abiotic stress. She holds a Ph.D. in Agricultural, Food, and Environmental Science (Doctor Europaeus, University of Catania), where her research focused on strategies to improve crop resilience and productivity under challenging climate conditions. Professionally, she contributes to the Agritech PNRR project on tomato adaptation to climate change and collaborates on research initiatives including Multicanapa and Ricinolio. Her research interests encompass plant adaptation to drought, salinity, and climate variability, seed biology, sowing optimization, and integrating molecular tools with field experimentation to improve yield, quality, and nutraceutical properties. Dr. Cafaro’s research skills include advanced plant phenotyping, statistical data analysis, experimental design, and development of sustainable crop management protocols. She has authored 11 peer-reviewed articles in Scopus/WoS-indexed journals, with one under review, and presented over 20 contributions at international conferences such as SIA, SOI, EUBCE, and ISHS, earning multiple awards for excellence in plant physiology and agronomy research. She serves as Guest Editor for Horticulturae (Special Issue: “Seed Biology in Horticulture: From Dormancy to Germination”) and peer reviewer for reputed journals including Agronomy, Plants, and International Journal of Molecular Sciences. Professionally, she is a member of the Società Italiana di Agronomia (SIA) and holds formal qualifications as Agronomist and Biologist. Dr. Cafaro’s growing academic impact is reflected in 59 citations, 15 documents, and an h-index of 5, demonstrating her significant and sustained influence in the field of crop physiology and climate-resilient agriculture.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn 

Featured Publications

1. Badagliacca, G., Testa, G., La Malfa, S. G., Cafaro, V., Lo Presti, E., & Monti, M. (2024). Organic fertilizers and bio-waste for sustainable soil management to support crops and control greenhouse gas emissions in Mediterranean agroecosystems: A review. Horticulturae, 10(5), 427. Cited by: 28

2. Arlotta, C., Ciacciulli, A., Strano, M. C., Cafaro, V., Salonia, F., Caruso, P., & Others. (2020). Disease resistant citrus breeding using newly developed high resolution melting and CAPS protocols for Alternaria brown spot marker assisted selection. Agronomy, 10(9), 1368. Cited by: 24

3. Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Germination response of different castor bean genotypes to temperature for early and late sowing adaptation in the Mediterranean regions. Agriculture, 13(8), 1569. Cited by: 12

4. Lippolis, A., Gezan, S. A., Zuidgeest, J., Cafaro, V., van Dinter, B. J., Elzes, G., & Others. (2025). Targeted genotyping (90K-SPET) facilitates genome-wide association studies and the prediction of yield-related traits in faba bean (Vicia faba L.). BMC Plant Biology, 25(1), 558. Cited by: 3

5. Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Assessment of germination response to salinity stress in castor through the hydrotime model. Agronomy, 13(11), 2783. 
Cited by: 6

Renjith Krishnan | Bioenergy | Young Researcher Award

Dr. Renjith Krishnan | Bioenergy | Young Researcher Award   

R&D Engineer | Nasser S. Al Hajri Corporation | United Arab Emirates

Dr. Renjith Krishnan is a distinguished mechanical engineer and educator with nearly a decade of experience in science and engineering, specializing in sustainable energy, waste management, biofuel production, lithium-ion batteries, and Industry 5.0 applications. He earned his Ph.D. in Mechanical Engineering from the National Institute of Technology Mizoram, India (2022), with a thesis on the production, characterization, and testing of bamboo biodiesel in a variable compression ratio engine. He also holds an M.Tech in Computer Integrated Manufacturing from the University of Calicut (2015) and a B.Tech in Mechanical Engineering from the University of Kerala (2013). Dr. Krishnan has served in multiple academic and industry roles, including Assistant Professor positions at Saveetha Engineering College, Madanapalle Institute of Technology & Science, and SHM Engineering College, as well as R&D Piping Engineer at Nasser S. Al Hajri Corporation, UAE. His research interests encompass biofuels, biomass gasification, lithium extraction, machine learning for sustainability, and clean energy systems. He possesses strong research skills in experimental design, process optimization, computational modeling, and data analysis using tools such as Ansys, SolidWorks, Origin, and Python. Dr. Krishnan has an impressive publication record, including Q1 and Q2 journals such as Cleaner Engineering and Technology, Energy Science & Engineering, and Environmental Science and Pollution Research, along with 14 patents in areas ranging from water flow measurement to portable air purifiers. He actively contributes to professional communities as a member of the World Society of Sustainable Energy Technologies and AICTSD and has completed certifications in AI, Python, and Product Management. Dr. Krishnan is committed to mentoring students and fostering innovation in academia and industry. He is the recipient of multiple recognitions for his teaching and research. His growing academic impact is reflected in 80 citations, 9 documents, and an h-index of 4, demonstrating his significant and sustained influence in the field of sustainable energy and mechanical engineering.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

1. Krishnan, R., & Gopan, G. (2024). A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Cleaner Engineering and Technology, 20, 100749. Cited by: 64

2. Krishnan, R., Hauchhum, L., Gupta, R., & Pattanayak, S. (2018). Prediction of equations for higher heating values of biomass using proximate and ultimate analysis. In 2nd International Conference on Power, Energy and Environment: Towards Smart Technology. IEEE.  Cited by: 28

3. Gopan, G., Hauchhum, L., Pattanayak, S., Kalita, P., & Krishnan, R. (2022). Prediction of species concentration in syngas produced through gasification of different bamboo biomasses: A numerical approach. International Journal of Energy and Environmental Engineering, 13(4), 1383–1394. Cited by: 9

4. Krishnan, R., Hauchhum, L., Gupta, R., & Gopan, G. (2022). Production and characterisation of biodiesel extracted from Indian bamboos. International Journal of Oil, Gas and Coal Technology, 31(3), 316–331. Cited by: 6

5. Gopan, G., Hauchhum, L., Kalita, P., Krishnan, R., & Pattanayak, S. (2021). Parametric study of tapered fluidized bed reactor under varied taper angle using TFM. AIP Conference Proceedings, 2396(1), 020020. Cited by: 4

 

Muhammad Ali Shahbaz | Bioenergy | Best Researcher Award

Dr. Muhammad Ali Shahbaz | Bioenergy | Best Researcher Award

Assistant Professor | University of Engineering and Technology | Pakistan

Dr.-Ing. Muhammad Ali Shahbaz is an accomplished academic and researcher in Mechanical Engineering, currently serving as an Assistant Professor at the Automotive Engineering Centre, University of Engineering and Technology (UET) Lahore, Pakistan. He earned his Ph.D. in Mechanical Engineering from the University of Duisburg-Essen, Germany, where his research focused on developing advanced endoscopic optical diagnostics for combustion engines, including temperature imaging, fuel film analysis, and soot incandescence studies. His M.Sc. research involved visualization of flame fronts using OH*-chemiluminescence and LIF techniques, and he holds a B.Sc. in Mechanical Engineering from UET Lahore with a thesis on biodiesel synthesis and engine performance. Professionally, he has over 14 years of teaching and research experience, having supervised multiple master’s and bachelor’s theses, reviewed and developed graduate curricula, and advised government agencies on EV policy and emissions testing standards. His research interests span optical diagnostics for internal combustion engines, alternative fuels, pyrolysis for bio-oil and biochar, waste-to-energy technologies, renewable energy systems, and integrated solid waste management. He possesses strong experimental and analytical skills in LIF, chemiluminescence, soot imaging, MATLAB, instrumentation, and pyrolysis systems. Dr. Shahbaz has contributed to major projects including EU Horizon 2020 research, biodiesel optimization funded by HEC Pakistan, and vibration analysis for electric vehicle development. His work is widely published in reputed journals such as Applied Optics, Experiments in Fluids, and Energy Science & Engineering and presented at global conferences including the Gordon Research Conference and European Combustion Meeting. He is the recipient of multiple awards including the Best Teacher Award and DAAD Scholarship. His growing academic impact is reflected in 2,940 citations, 139 documents, and an h-index of 31, demonstrating his significant and sustained influence in the field of combustion diagnostics and sustainable energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Munir, M. A., Habib, M. S., Hussain, A., Shahbaz, M. A., Qamar, A., Masood, T., Sultan, M., Mujtaba, M. A., Imran, S., Hasan, M., Akhtar, M. S., Ayub, H. M. U., & Salman, C. A. (2022). Blockchain adoption for sustainable supply chain management: Economic, environmental, and social perspectives. Frontiers in Energy Research, 10, 899632. (Cited by 150)

2. Razzaq, L., Mujtaba, M. A., Shahbaz, M. A., Nawaz, S., Khan, H. M., Hussain, A., & others. (2022). Effect of biodiesel–dimethyl carbonate blends on engine performance, combustion and emission characteristics. Alexandria Engineering Journal, 61(7), 5111–5121.  (Cited by 33)

3. Nawaz, A., Ahmed, Z., Shahbaz, A., Khan, Z., & Javed, M. (2014). Coagulation–flocculation for lignin removal from wastewater – A review. Water Science and Technology, 69(8), 1589–1597. (Cited by 27)

4. Shahbaz, M. A., Jüngst, N., Grzeszik, R., & Kaiser, S. A. (2021). Endoscopic fuel film, chemiluminescence, and soot incandescence imaging in a direct-injection spark-ignition engine. Proceedings of the Combustion Institute, 38(4), 5869–5877. (Cited by 12)

5. Nawaz, A., Shahbaz, M. A., & Javed, M. (2015). Management of organic content in municipal solid waste – A case study of Lahore. International Journal of Environment and Waste Management, 15(1), 15–23. (Cited by 8)

 

Miftah Fekadu Kedir | Bioenergy | Best Researcher Award

Dr. Miftah Fekadu Kedir | Bioenergy | Best Researcher Award

Researcher | Ethiopian Forestry Development | Ethiopia

Dr. Miftah Fekadu Kedir, a distinguished researcher at Ethiopian Forestry Development, holds a Ph.D. in Bioenergy Development and Climate Change, an M.Sc. in Tropical Forestry, and a B.Sc. in General Forestry. With extensive experience in socio-economic and policy impact assessment, climate innovation, sustainable renewable energies, and carbon management, he has significantly contributed to Ethiopia’s green energy and climate adaptation initiatives. Dr. Kedir has led and coordinated national and international projects, including the National Industrial Forest Plantation Project, the National Climate Change Adaptation Research Division, and collaborative work with the African Forest Forum, DAAD, SNV, and the Barr Foundation (USA). His research focuses on bioenergy, improved biomass cookstoves, biogas, liquid biofuels, carbon storage, and greenhouse gas emission measurement, integrating policy, technological innovation, and socio-economic assessment. He has published 22 peer-reviewed articles in reputed journals such as Frontiers in Environmental Science, JAEID, Bionatura, and Sustainable Forestry, authored one book (ISBN: 978-3-659-56185-6), and contributed to multiple consultancy and industry projects on biogas, biofuels, and cookstoves. His work has demonstrated measurable impacts on indoor air quality, carbon emissions, deforestation, and sustainable energy adoption, while identifying key challenges in liquid biofuel production and policy implementation. As a mentor and educator, he has guided students in ATVET colleges and promoted capacity-building in forestry and renewable energy sectors. Dr. Kedir is a member of professional organizations including the African Forest Forum, Association of Ethiopian Soil Society, and AEGE, reflecting his commitment to advancing research and knowledge exchange. His growing academic impact is reflected in 22 citations by 22 documents, 2 indexed publications, and an h-index of 2, demonstrating his significant and sustained influence on bioenergy and climate change research.

Profiles: Google Scholar | ScopusORCID

Featured Publications

1. Miftah, F. K., & Mutta, D. (2024). Potential markets and policies for sustainable liquid biofuel production with emphasis to Eastern Africa countries: A review. Energy, Sustainability and Society, 14(1), 1. (Citations: 15)

2. Kedir, M. F., Onchieku, M. J., Ntalikwa, J. S., & Mutta, D. (2022). Developing circular economy in Eastern Africa through liquid biofuels: Cases of Ethiopia, Kenya and Tanzania. African Forest Forum, 5. (Citations: 5)

3. Kedir, M. F. (2021). Pyrolysis bio-oil and bio-char production from firewood tree species for energy and carbon storage in rural wooden houses of southern Ethiopia. In African handbook of climate change adaptation (pp. 1313–1329). (Citations: 5)

4. Fekadu, M., Mekonnen, Z., & Tesfaye, M. (2021). Comparison of kitchen performance test on firewood consumption and emission of improved mirt and traditional three stone open cook stoves in Amaya, and Bure districts of Ethiopia. Climate Change, 7(23), 1–10. (Citations: 3)

5. Kedir, M. F. (2023). Prospects for rural transformation and socioenvironmental dilemma in the production and uses of liquid biofuels in Eastern Africa countries. In Rural Areas–Development and Transformations. (Citations: 2)