Ao Wang | Biomass | Best Researcher Award

Dr. Ao Wang | Biomass | Best Researcher Award

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry | China

Dr. Ao Wang is an Associate Research Fellow at the Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF) and currently serves as a visiting scholar at Nanyang Technological University, fostering international research collaborations. His professional expertise centers on the preparation and application of advanced functional carbon materials derived from biomass, with a particular focus on electrochemical energy storage. He has led major research projects, including national key programs and fundamental research initiatives at CAF. Dr. Wang’s contributions include elucidating the evolution mechanism of carbon microcrystals during lignin and cellulose pyrolysis, demonstrating that the isotropy of carbon crystal seeds drives the ordered growth of graphite-like microcrystals, and revealing the critical influence of catalyst-induced pore sizes on the formation of closed pore structures in energy storage carbon materials. He has published over 30 articles in high-impact journals such as Progress in Materials Science, Advanced Functional Materials, and Carbon Energy, and has been granted 8 invention patents. His research skills encompass biomass carbon material synthesis, catalytic carbonization, pore structure engineering, and electrochemical characterization for lithium-ion and sodium-ion batteries, as well as supercapacitors. Dr. Wang continues to advance the field of biomass-derived carbon materials for energy storage, demonstrating a strong commitment to sustainable energy solutions and functional material innovation, with a documented record of 1,899 citations, 99 documents, and an h-index of 24.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

Fan, M., Yuan, Q., Zhao, Y., Wang, Z., Wang, A., Liu, Y., Sun, K., Wu, J., Wang, L., … (2022). A facile “double‐catalysts” approach to directionally fabricate pyridinic N–B‐pair‐doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient … Advanced Materials, 34(13), 2107040. Cited by 163.

Fan, M., Wang, Z., Sun, K., Wang, A., Zhao, Y., Yuan, Q., Wang, R., Raj, J., Wu, J., … (2023). N–B–OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Advanced Materials, 35(17), 2209086. Cited by 150.

Wang, A., Sun, K., Xu, R., Sun, Y., Jiang, J. (2021). Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. Journal of Cleaner Production, 283, 125385. Cited by 118.

Chen, C., Sun, K., Huang, C., Yang, M., Fan, M., Wang, A., Zhang, G., Li, B., Jiang, J., … (2023). Investigation on the mechanism of structural reconstruction of biochars derived from lignin and cellulose during graphitization under high temperature. Biochar, 5(1), 51. Cited by 66.

Cao, M., Liu, Y., Sun, K., Li, H., Lin, X., Zhang, P., Zhou, L., Wang, A., Mehdi, S., … (2022). Coupling Fe3C nanoparticles and N‐doping on wood-derived carbon to construct reversible cathode for Zn–Air batteries. Small, 18(26), 2202014. Cited by 58.

 

Renjith Krishnan | Bioenergy | Young Researcher Award

Dr. Renjith Krishnan | Bioenergy | Young Researcher Award   

R&D Engineer | Nasser S. Al Hajri Corporation | United Arab Emirates

Dr. Renjith Krishnan is a distinguished mechanical engineer and educator with nearly a decade of experience in science and engineering, specializing in sustainable energy, waste management, biofuel production, lithium-ion batteries, and Industry 5.0 applications. He earned his Ph.D. in Mechanical Engineering from the National Institute of Technology Mizoram, India (2022), with a thesis on the production, characterization, and testing of bamboo biodiesel in a variable compression ratio engine. He also holds an M.Tech in Computer Integrated Manufacturing from the University of Calicut (2015) and a B.Tech in Mechanical Engineering from the University of Kerala (2013). Dr. Krishnan has served in multiple academic and industry roles, including Assistant Professor positions at Saveetha Engineering College, Madanapalle Institute of Technology & Science, and SHM Engineering College, as well as R&D Piping Engineer at Nasser S. Al Hajri Corporation, UAE. His research interests encompass biofuels, biomass gasification, lithium extraction, machine learning for sustainability, and clean energy systems. He possesses strong research skills in experimental design, process optimization, computational modeling, and data analysis using tools such as Ansys, SolidWorks, Origin, and Python. Dr. Krishnan has an impressive publication record, including Q1 and Q2 journals such as Cleaner Engineering and Technology, Energy Science & Engineering, and Environmental Science and Pollution Research, along with 14 patents in areas ranging from water flow measurement to portable air purifiers. He actively contributes to professional communities as a member of the World Society of Sustainable Energy Technologies and AICTSD and has completed certifications in AI, Python, and Product Management. Dr. Krishnan is committed to mentoring students and fostering innovation in academia and industry. He is the recipient of multiple recognitions for his teaching and research. His growing academic impact is reflected in 80 citations, 9 documents, and an h-index of 4, demonstrating his significant and sustained influence in the field of sustainable energy and mechanical engineering.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

1. Krishnan, R., & Gopan, G. (2024). A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Cleaner Engineering and Technology, 20, 100749. Cited by: 64

2. Krishnan, R., Hauchhum, L., Gupta, R., & Pattanayak, S. (2018). Prediction of equations for higher heating values of biomass using proximate and ultimate analysis. In 2nd International Conference on Power, Energy and Environment: Towards Smart Technology. IEEE.  Cited by: 28

3. Gopan, G., Hauchhum, L., Pattanayak, S., Kalita, P., & Krishnan, R. (2022). Prediction of species concentration in syngas produced through gasification of different bamboo biomasses: A numerical approach. International Journal of Energy and Environmental Engineering, 13(4), 1383–1394. Cited by: 9

4. Krishnan, R., Hauchhum, L., Gupta, R., & Gopan, G. (2022). Production and characterisation of biodiesel extracted from Indian bamboos. International Journal of Oil, Gas and Coal Technology, 31(3), 316–331. Cited by: 6

5. Gopan, G., Hauchhum, L., Kalita, P., Krishnan, R., & Pattanayak, S. (2021). Parametric study of tapered fluidized bed reactor under varied taper angle using TFM. AIP Conference Proceedings, 2396(1), 020020. Cited by: 4

 

Sergey Barykin | Bioenergy | Best Researcher Award

Prof. Dr. Sergey Barykin | Bioenergy | Best Researcher Award

Head of dissertation council | Peter the Great St. Petersburg Polytechnic University | Russia

Professor Dr. Sergey E. Barykin is a renowned economist and academic leader specializing in digital platforms, financial logistics, digital economy, international logistics networks, Industry 4.0, integrated logistics, and sustainable economic modeling. He holds advanced academic qualifications, including a diploma, a Ph.D., and a Doctor of Sciences in Economics, reflecting his extensive research expertise. He currently serves as Professor and Deputy Director for Scientific Research and Development at SPbPU’s Institute of Industrial Management, Economics, and Trade and heads a dissertation council focusing on regional and industrial economics, logistics, and marketing, having previously held faculty and leadership roles at other prominent institutions. His research encompasses digital and financial logistics, logistics network management, digital transformation of trade and services, smart city logistics, ESG goals, and the integration of digital finance for sustainable development. He possesses strong skills in economic and mathematical modeling, stochastic processes, digital twin modeling, decision-making in complex systems, and strategic management applications in logistics and energy sectors. Professor Barykin has published extensively in high-impact journals, contributing significantly to the fields of sustainability, innovation, and digital economics, and has led multiple national and international research projects while maintaining extensive global collaborations. He serves on editorial boards of leading journals and has received several awards recognizing his excellence in peer review. Recognized among the most-cited scientists globally, Professor Barykin demonstrates outstanding contributions to digital logistics, corporate logistics theory, and digital economy research, combining scholarly achievement with leadership, mentorship, and a vision to advance sustainable socio-economic development through innovative applications of technology and economic research.

Profile: Google Scholar | Scopus | ORCID

Featured Publications

Barykin, S. Y., Kapustina, I. V., Kirillova, T. V., Yadykin, V. K., & Konnikov, Y. A. (2020). Economics of digital ecosystems. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 124. Cited by 214.

Barykin, S. Y., Bochkarev, A. A., Kalinina, O. V., & Yadykin, V. K. (2020). Concept for a supply chain digital twin. International Journal of Mathematical, Engineering and Management Sciences, 5, … Cited by 148.

Iqbal, K. M. J., Khalid, F., & Barykin, S. Y. (2021). Hybrid workplace: The future of work. Handbook of Research on Future Opportunities for Technology Management, … Cited by 143.

Li, J., Yüksel, S., Dınçer, H., Mikhaylov, A., & Barykin, S. E. (2022). Bipolar q-ROF hybrid decision making model with golden cut for analyzing the levelized cost of renewable energy alternatives. IEEE Access, 10, 42507–42517. Cited by 103.

Barykin, S., Kapustina, I., Sergeev, S., Kalinina, O., Vilken, V., De la Poza, E., … (2021). Developing the physical distribution digital twin model within the trade network. Academy of Strategic Management Journal, 20(1), 1–24. Cited by 97.