Sergei Petrenko | Solar Energy | Best Researcher Award

Prof. Dr. Sergei Petrenko | Solar Energy | Best Researcher Award

Sirius University of Science and Technology | Russia

Prof. Sergei Petrenko, born in 1968 in Kaliningrad (the Baltic), is a distinguished Doctor of Technical Sciences and Professor at Sirius University, Russia, recognized for his extensive contributions to information security and digital technologies. He graduated with honors in 1991 from Leningrad State University with a degree in mathematics and engineering, laying a solid foundation for his academic and professional journey. Over the years, Prof. Petrenko has designed and implemented critical information systems for numerous national and corporate projects, including three national Situational-Crisis Centers (RCCs), three operators of special information services (MSSP and MDR), two virtual trusted communication operators (MVNO), more than ten segments of the System for Detection, Prevention, and Elimination of the Effects of Computer Attacks (SOPCA) and the System for Detection and Prevention of Computer Attacks (SPOCA), as well as five monitoring centers for information security threats and response, including CERT, CSIRT, and two industrial CERTs for IIoT/IoT environments. His research interests encompass information security, big data technologies, cloud security, corporate and industrial Internet protection, and innovative digital economy solutions. Prof. Petrenko possesses advanced research skills in auditing corporate cybersecurity, risk management, security policy formulation, and developing methods and technologies to safeguard critical national infrastructure. He has authored and co-authored 14 monographs and practical manuals published by Springer Nature Switzerland AG, River Publishers, Peter, Athena, and DMK-Press, including works such as “Big Data Technologies for Monitoring,” “Innovation for the Digital Economy,” and “Methods and Technologies of Cloud Security,” alongside over 350 articles in leading journals and conference proceedings. His exceptional contributions to national projects have earned him the prestigious “Big ZUBR” and “Golden ZUBR” awards. Prof. Petrenko continues to lead the State Scientific School, advancing both applied and theoretical research in information security, fostering innovation, and mentoring the next generation of cybersecurity experts, with a documented record of 296 citations, 55 documents, and an h-index of 10.

Profiles: Google Scholar | Scopus| ORCID

Featured Publications

1. Balyabin, A. A., & Petrenko, S. A. (2025). Model of a blockchain platform with cyber-immunity under quantum attacks. Voprosy kiberbezopasnosti, (3), 72-82.

2. Balyabin, A., & Petrenko, S. (2025). Methodology for synthesizing quantum-resistant blockchain platforms with cyber-immunity. Voprosy kiberbezopasnosti, (4), 46-54.

3. Buchatskiy, P., Onishchenko, S., Petrenko, S., & Teploukhov, S. (2025). Methodology for assessing the technical potential of solar energy based on artificial intelligence technologies and simulation-modeling tools. Energies.

4. Olifirov, A. V., Makoveichuk, K., & Petrenko, S. (2025). Research of aspects of omnicanal approach in the industry of digital learning technologies of organizations. In [Book Title], Springer Nature Switzerland AG (Chapter).

5. Petrenko, S. A., & Alexei Petrenko. (2023). Basic Algorithms Quantum Cryptanalysis. Voprosy kiberbezopasnosti, (1), 100-115.

 

 

Kai-Li Wang | Solar Energy | Best Researcher Award

 Assist. Prof. Dr. Kai-Li Wang | Solar Energy | Best Researcher Award

Research Scholar | Soochow University | China

Dr. Kai-Li Wang, a distinguished researcher from Soochow University, Suzhou, China, is a leading expert in Materials Science & Engineering, focusing on organic and perovskite semiconductor devices and their physics. He earned his Ph.D. in Materials Science & Engineering from Soochow University under the supervision of Prof. Liang-Sheng Liao and Prof. Zhao-Kui Wang, following an M.Sc. in the same field from Henan Normal University and a B.Sc. in Physics from Xingyi Normal University for Nationalities. Currently a postdoctoral researcher at the Institute of Functional Nano & Soft Materials (FUNSOM), Dr. Wang has developed exceptional expertise in perovskite material synthesis, vacuum evaporation deposition technology, single-junction/module/tandem device fabrication, and indoor/outdoor photovoltaic applications, contributing to innovative solutions for high-efficiency solar energy conversion. His professional experience includes leading national and international collaborative research projects, mentoring junior researchers, and co-inventing two patents on perovskite solar devices. Dr. Wang’s prolific research output encompasses over 80 peer-reviewed articles, including publications in top-tier journals such as Science, J. Am. Chem. Soc., Adv. Mater., Adv. Energy Mater., Adv. Funct. Mater., Nano Lett., Sci. Bull., and Chem. Sci., with 18 as first or co-first author. He has made notable contributions to understanding defect passivation, ion–dipole interactions, and large-scale perovskite film fabrication, demonstrating both scientific innovation and practical impact. Dr. Wang has received recognition for his research achievements and continues to engage in leadership roles, international collaborations, and mentoring initiatives, fostering the next generation of materials scientists. His growing academic impact is reflected in 4,642 citations by 3,858 documents, 92 documents, and an h-index of 31, demonstrating his significant and sustained influence in the field of perovskite photovoltaics.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

1. Wang, R., Xue, J., Wang, K. L., Wang, Z. K., Luo, Y., Fenning, D., Xu, G., Nuryyeva, S., … (2019). Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 366(6472), 1509–1513. Citations: 1,164

2. Igbari, F., Wang, R., Wang, Z. K., Ma, X. J., Wang, Q., Wang, K. L., Zhang, Y., Liao, L. S., … (2019). Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Letters, 19(3), 2066–2073. Citations: 343

3. Xue, J., Wang, R., Chen, X., Yao, C., Jin, X., Wang, K. L., Huang, W., Huang, T., … (2021). Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 371(6529), 636–640. Citations: 284

4. Xue, J., Wang, R., Wang, K. L., Wang, Z. K., Yavuz, I., Wang, Y., Yang, Y., Gao, X., … (2019). Crystalline liquid-like behavior: Surface-induced secondary grain growth of photovoltaic perovskite thin film. Journal of the American Chemical Society, 141(35), 13948–13953. Citations: 225

5. Phung, N., Félix, R., Meggiolaro, D., Al-Ashouri, A., Sousa e Silva, G., … (2020). The doping mechanism of halide perovskite unveiled by alkaline earth metals. Journal of the American Chemical Society, 142(5), 2364–2374. Citations: 198