Yanfei Li | Green Hydrogen | Best Researcher Award

Assoc. Prof. Dr. Yanfei Li | Green Hydrogen | Best Researcher Award

Associate Professor | Shenzhen Technology University | China

Dr. Yanfei Li is a prominent scholar in energy economics, industrial policy, and technological innovation, with research spanning the full spectrum of Asia’s low-carbon transition. His work covers hydrogen energy systems, new energy vehicle deployment, green fuel trade, regional gas markets, and cross-border electricity market design, while also addressing broader themes such as technological catch-up, industrial upgrading, and innovation policy in emerging economies. Dr. Li has played significant roles in various interdisciplinary and policy-driven research initiatives, collaborating with leading institutions, regional forums, and intergovernmental organizations across East and Southeast Asia. His contributions include formulating ASEAN’s hydrogen energy development roadmap, assessing large-scale green hydrogen demonstration projects, evaluating China’s green hydrogen trade potential, and analyzing the economic value and carbon mitigation impacts of hydrogen fuel cell vehicles. He has also undertaken extensive studies on integrated regional electricity systems, market mechanisms for multilateral power trade, energy infrastructure planning, and strategic pathways for achieving sustainable industrial competitiveness. Dr. Li’s scholarship is characterized by rigorous quantitative modelling, techno-economic assessment, and policy-oriented analysis, consistently bridging academic research with real-world energy planning and strategic decision-making. His academic output includes 29 peer-reviewed journal articles, books, and institutional reports, many published in high-impact outlets such as Energy Policy, International Journal of Hydrogen Energy, Energy Economics, Energy for Sustainable Development, Renewable Energy, and Journal of Cleaner Production. Several of his publications have been recognized as ESI Highly Cited Papers and ESI Hot Papers, reflecting their influence on both scholarly debates and policymaking communities. His research continues to shape regional discourse on hydrogen commercialization, sustainable transport transitions, green industrial development, and long-term energy security strategies across Asia. Dr. Li’s academic influence and research productivity are reflected in his metrics 1,235 citations, 29 documents, and an h-index of 13, underscoring his substantial contributions to global energy and technology policy research.

Profiles: Google Scholar | Scopus | ORCID 

Featured Publications

1. Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703.

2. Shi, X., Liao, X., & Li, Y. (2020). Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework. Renewable Energy, 154, 786–796.

3. Li, Y., & Kimura, S. (2021). Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios. Energy Policy, 148, 111980.

4. Khanna, R. A., Li, Y., Mhaisalkar, S., Kumar, M., & Liang, L. J. (2019). Comprehensive energy poverty index: Measuring energy poverty and identifying micro-level solutions in South and Southeast Asia. Energy Policy, 132, 379–391.

5. Li, Y., Shi, X., & Phoumin, H. (2022). A strategic roadmap for large-scale green hydrogen demonstration and commercialisation in China: A review and survey analysis. International Journal of Hydrogen Energy, 47(58), 24592–24609.

Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Dr. Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Doctor | Air Force Engineering University | China

Dr. Zhenghao Yang is a distinguished researcher at the Air Force Engineering University, Xi’an, China, specializing in advanced combustion systems, energy conversion efficiency, and sustainable propulsion technologies. With 16 publications, 113 citations, and an h-index of 6, he has established a growing academic presence in renewable and green energy research. His work focuses on optimizing combustion and energy conversion mechanisms under specialized and extreme operating conditions, particularly for high-altitude applications in aerospace systems. A notable example of his research is the study titled “Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel” (Renewable Energy, 2026), which exemplifies his innovative efforts in integrating hydrogen-based propulsion technologies as sustainable alternatives to traditional fossil-fuel engines. His expertise encompasses computational fluid dynamics (CFD), thermodynamic modeling, performance optimization, and hybrid energy system integration, contributing to advancements in energy efficiency and emission reduction. Collaborating with 18 co-authors across various institutions, Dr. Yang demonstrates strong interdisciplinary engagement that connects mechanical engineering, renewable energy, and environmental sustainability. His research holds significant relevance for both aviation and defense sectors, addressing global challenges related to clean energy utilization, decarbonization, and eco-efficient propulsion. Through his continued exploration of hydrogen-fueled engines and high-performance energy systems, Dr. Zhenghao Yang contributes meaningfully to the worldwide transition toward sustainable energy technologies and low-carbon innovation, positioning himself as a promising leader in the field of green propulsion research.

Profile: Scopus | ORCID | ResearchGate

Featured Publications

1. Yang, Z., Jia, G., Fang, Z., Du, Y., He, G., & Wang, Z. (2026). Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel. Renewable Energy.

2. Yang, Z., Du, Y., Jia, G., Gao, X., Fang, Z., He, G., & Wang, Z. (2025). Clean combustion of a hydrogen-doped elliptical rotary engine based on turbulent jet ignition: Synergistic enhancement of thermodynamic and emission performance via flow field coupling. Energy Conversion and Management.

3. Yang, Z., Du, Y., Jia, G., Gao, X., He, G., & Wang, Z. (2025). Effect of multi-hole passive jet ignition on thermodynamic and combustion characteristics of hydrogen-doping elliptical rotary engine in high-altitude environment. Energy.

4. Yang, Z., Jia, G., Du, Y., Fang, Z., Gao, X., He, G., & Wang, Z. (2025). Investigation of high-tumble chamber of ammonia-hydrogen fueled elliptical rotary engine based on turbulence and combustion characteristics. Fuel.

5. Du, Y., Yang, Z., Zhang, Z., Wang, Z., He, G., Wang, J., & Zhao, P. (2024). Control strategy optimization exploration of a novel hydrogen-fed high-efficiency X-type rotary engine hybrid power system by coupling with recuperative organic Rankine cycle. Energy.

Dr. Zhenghao Yang’s research advances the development of clean, high-efficiency hydrogen-fueled rotary engines, contributing to global decarbonization, sustainable aviation, and next-generation propulsion technologies. His innovative work bridges energy science and engineering, fostering breakthroughs that support a greener and more energy-efficient future for society and industry alike.