Mohsin Raza | Renewable Energy | Innovation Research Award

Dr. Mohsin Raza | Renewable Energy | Innovation Research Award

Post Doctoral Research Associate | University of Sharjah | United Arab Emirates

Dr. Mohsin Raza, Ph.D., is a distinguished researcher specializing in biomass valorization, bioenergy, green chemistry, and nanocellulose production. He is currently advancing research in sustainable material science and bio-based innovations as a Postdoctoral Research Associate at a leading research institute. His academic background and scientific expertise center on transforming agricultural and lignocellulosic wastes into high-value materials through green and energy-efficient processes. Dr. Raza’s work integrates biomass conversion technologies, lignin recovery, nanocellulose extraction, and bio-based thermal insulation development, emphasizing environmental sustainability and circular economy principles. His core research skills include thermochemical processing, biopolymer synthesis, pyrolysis kinetics, and the use of natural deep eutectic solvents for eco-friendly material synthesis. Highly skilled in advanced analytical techniques such as TGA, DSC, XRD, FTIR, GC-MS, SEM, and TEM, he also demonstrates excellence in intellectual property development, holding multiple granted U.S. patents and additional applications in the fields of biomass valorization and green solvent technologies. As a prolific author with extensive publications in high-impact Q1 journals from leading publishers, Dr. Raza’s research contributions have significantly advanced understanding in renewable energy systems, sustainable chemistry, and nanomaterial engineering. His work has been recognized through multiple innovation and sustainability awards, reflecting his leadership and creativity in promoting clean technologies. Through collaborative research and continuous innovation, Dr. Raza continues to shape the future of renewable materials and sustainable energy, contributing to global progress toward a circular bioeconomy, with a documented record of 994 citations, 28 publications, and an h-index of 14.

Profile: Google Scholar | Scopus | ORCID

Featured Publications

1. Inayat, A., & Raza, M. (2019). District cooling system via renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 107, 360–373. Cited by: 221

2. Raza, M., Abu-Jdayil, B., Al-Marzouqi, A. H., & Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats–Redfern method. Renewable Energy, 183, 67–77. Cited by: 161

3. Raza, M., Inayat, A., Ahmed, A., Jamil, F., Ghenai, C., Naqvi, S. R., Shanableh, A., & Park, Y. K. (2021). Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing. Sustainability, 13(19), 11061. Cited by: 148

4. Raza, M., Abu-Jdayil, B., Banat, F., & Al-Marzouqi, A. H. (2022). Isolation and characterization of cellulose nanocrystals from date palm waste. ACS Omega, 7(29), 25366–25379. Cited by: 102

5. Raza, M., & Abu-Jdayil, B. (2022). Cellulose nanocrystals from lignocellulosic feedstock: A review of production technology and surface chemistry modification. Cellulose, 29(2), 685–722. Cited by: 77

 

Yao-Ching Hsieh | Renewable Energy | Best Researcher Award

Prof. Yao-Ching Hsieh | Renewable Energy | Best Researcher Award

Professor | National Sun Yat-sen University | Taiwan

Prof. Yao-Ching Hsieh is a distinguished professor in the Department of Electrical Engineering at National Sun Yat-sen University, with extensive expertise in battery charging technology, power electronic converters, power factor correction, and wireless power transfer, focusing on innovative solutions for energy efficiency and grid integration of renewable energy. He has led significant research projects, including the “Wireless Battery Charging System for Under Water Vehicles” funded by the National Science and Technology Council, Taiwan, and collaborated with industry on projects such as EMI analysis of MOSFETs in adapter circuitry. Prof. Hsieh has contributed to power electronics through the development of soft-switching techniques for interleaved converters, novel charge-equalization topologies for battery strings, and center-tapped pickup winding methods to enhance wireless power transfer efficiency. An active IEEE member, he has published numerous peer-reviewed articles in SCI and Scopus-indexed journals, served in editorial capacities, and engaged in international research collaborations. His work bridges theoretical innovation and practical applications, advancing energy systems and sustainable technologies while mentoring emerging engineers. Prof. Hsieh continues to drive innovation in battery and power electronics research, contributing to energy-efficient solutions and renewable energy integration, with a documented record of 3,729 citations, 139 documents, and an h-index of 25.

Profiles: Scopus | ORCID

Featured Publications

Hsieh, Y.-C., et al. (2024). Light load analysis and topology morphing between full-/half-bridge DC-to-DC converter. International Journal of Electronics. citation-1

Hsieh, Y.-C., et al. (2023). High-efficiency bidirectional resonant WPT system for electric vehicles. International Journal of Power Electronics and Drive Systems. citations-3

Hsieh, Y.-C., et al. (Conference Paper). Light-load conversion efficiency enhancement for three-phase dual active bridge DC-DC converters. citation-1

Hsieh, Y.-C., et al. (Conference Paper). A DC power connector with voltage spike suppression. citation-1

Hsieh, Y.-C., et al. (2025). State of health estimation for LiFePO4 batteries using incremental capacity analysis. Conference Paper.

Christian Idogho | Solar Energy | Best Researcher Award

Mr. Christian Idogho | Solar Energy | Best Researcher Award

Researcher | University of Vermont | United States

Mr. Christian Idogho is a Ph.D. Candidate in Materials Science at the University of Vermont, where he focuses on semiconductor thin-film growth, materials characterization, and renewable energy systems. He earned a Bachelor of Engineering in Mechanical Engineering from the University of Agriculture, Makurdi (2020) and a Diploma in Chemical Engineering from Auchi Polytechnic. His professional and research experience spans multiple institutions and international collaborations, including advanced thin-film deposition projects using CVD, sputtering, and pulsed-laser deposition, as well as in-situ X-ray scattering studies at Brookhaven National Laboratory. He has also contributed to renewable energy forecasting research using machine learning at the University of Nigeria, Nsukka, and held teaching assistantships at both the University of Vermont and Auchi Polytechnic, mentoring students in physics and core engineering subjects. His research interests include semiconductor thin-film growth, thermoelectric materials, machine learning for clean energy forecasting, renewable energy systems, and advanced materials characterization techniques such as XRD, SEM, AFM, and ellipsometry. Mr. Idogho’s research skills cover a wide spectrum, including COMSOL Multiphysics, MATLAB, Python, CAD tools (SolidWorks, Autodesk Inventor), and simulation of photovoltaic and thermoelectric systems. His awards and honors include the Best Researcher Award in Machine Learning (2025), Best Undergraduate Thesis Award (2020), and the Olive Real Estate Science and Engineering Scholarship. He is also an active reviewer for journals such as Energy Research and Clean Energy and maintains memberships in Sigma Xi, the Association for Iron & Steel Technology (AIST), Material Advantage, NSBE, and Black in AI. Mr. Idogho’s contributions through publications in Energy Science & Engineering, Energies, and Unconventional Resources underscore his growing reputation in clean energy and advanced materials. With his vision, technical expertise, and commitment to international collaboration, he is positioned to become a global leader in sustainable energy materials and semiconductor research. Mr. Idogho’s growing academic impact is reflected in 21 citations, 4 documents, and an h-index of 1, demonstrating his emerging influence in materials science and renewable energy research.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

1. Maduabuchi, C., Nsude, C., Eneh, C., Eke, E., Okoli, K., Okpara, E., & Idogho, C. (2023). Renewable energy potential estimation using climatic-weather-forecasting machine learning algorithms. Energies, 16(4), 1603. Cited by: 25

2. Onuh, P., Ejiga, J. O., Abah, E. O., Onuh, J. O., Idogho, C., & Omale, J. (2024). Challenges and opportunities in Nigeria’s renewable energy policy and legislation. World Journal of Advanced Research and Reviews, 23(2), 2354–2372.  Cited by: 15

3. Idoko, P. I., Ezeamii, G. C., Idogho, C., Peter, E., Obot, U. S., & Iguoba, V. A. (2024). Mathematical modeling and simulations using software like MATLAB, COMSOL and Python. Magna Scientia Advanced Research and Reviews, 12(2), 62–95. Cited by: 6

4. Maduabuchi, C., Nsude, C., Eneh, C., Eke, E., Okoli, K., Okpara, E., & Idogho, C. (2023). Renewable energy potential estimation using climatic-weather-forecasting machine learning algorithms. Energies, 16(4), 1603.  Cited by: 3

5. Idogho, C., Abah, E. O., Onuh, J. O., Harsito, C., Omenka, K., Samuel, A., Ejila, A., & Idoko, I. P. (2025). Machine learning-based solar photovoltaic power forecasting for Nigerian regions. Energy Science & Engineering, 13(4), 1922–1934. Cited by: 1

Vahed Ghiasi | Renewable Energy | Pioneer Researcher Award

Assist. Prof. Dr. Vahed Ghiasi | Renewable Energy | Pioneer Researcher Award

Assistant Professor | Malayer university | Iran

Dr. Vahed Ghiasi is an accomplished civil and geotechnical engineer with a Ph.D. in Geotechnical and Geological Engineering from University Putra Malaysia (2012), where his research focused on the effects of weak rock geomechanical properties on tunnel stability. He currently serves as Assistant Professor at the Faculty of Civil and Architecture Engineering, Malayer University, Iran, with extensive experience in supervising graduate students, managing large-scale research projects, and contributing to both national and international engineering initiatives. His professional expertise encompasses tunnel engineering, soil-structure interaction, foundation engineering, advanced soil mechanics, and landslide hazard assessment, supported by practical work in seismic and earth dam engineering. Dr. Ghiasi has led numerous research projects, including international collaborations on landslide hazard mapping using neural networks and fuzzy logic, while publishing over 130 peer-reviewed articles in high-impact journals such as SN Applied Sciences, Results in Engineering, Geomechanics and Engineering, and Natural Hazards. He is also an active contributor to the global scientific community, serving on editorial boards for journals like SN Applied Sciences and Applied Engineering and Technology, and reviewing for more than 20 international journals. His research interests include geotechnical design, tunnel stability analysis, landslide risk assessment, soil improvement, and advanced numerical modeling techniques, utilizing software such as PLAXIS, PHASE 2 FEM, and FDM. Dr. Ghiasi’s professional involvement extends to memberships in prominent societies including SEAGS, IGS, ITA-AITES, ASCE, and IEM, and he has been recognized with awards such as the Most Outstanding Iranian Student in Malaysia (2011) and Superior Researcher of the Faculty of Civil Engineering, Malayer University (2019–2023). His work demonstrates a commitment to advancing geotechnical engineering knowledge, mentoring future engineers, and contributing to resilient infrastructure development. Dr. Ghiasi’s growing academic impact is reflected in 316 citations, 45 documents, and an h-index of 11, demonstrating his sustained influence in geotechnical engineering research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Safaei, M., Omar, H., Huat, B. K., Yousof, Z. B. M., & Ghiasi, V. (2011). Deterministic rainfall induced landslide approaches, advantage and limitation. Electronic Journal of Geotechnical Engineering, 16, 1619–1650. Cited by 47

2. Mafian, S., Huat, B. B. K., & Ghiasi, V. (2009). Evaluation on root theories and root strength properties in slope stability. European Journal of Scientific Research, 30(4), 594–607. Cited by 43

3. Ghiasi, V., & Koushki, M. (2020). Numerical and artificial neural network analyses of ground surface settlement of tunnel in saturated soil. SN Applied Sciences, 2(5), 939. Cited by 42

4. Kazemian, S., Prasad, A., Huat, B. B. K., Ghiasi, V., & Ghareh, S. (2012). Effects of cement–sodium silicate system grout on tropical organic soils. Arabian Journal for Science and Engineering, 37(8), 2137–2148. Cited by 38

5. Safaei, M., Omar, H., Yousof, Z. B. M., & Ghiasi, V. (2010). Applying geospatial technology to landslide susceptibility assessment. Electronic Journal of Geotechnical Engineering, 15(G), 677–696. Cited by 31

 

Ahmet Elbir | Renewable Energy | Best Researcher Award

Dr. Ahmet Elbir | Renewable Energy | Best Researcher Award

Süleyman Demirel University | Turkey

Dr. Ahmet Elbır, Ph.D. in Energy Systems from Süleyman Demirel University (2021), is a distinguished academic and researcher specializing in thermodynamic systems, renewable energy, and sustainable energy optimization. His educational background includes multiple degrees in Mechanical Engineering and Energy Systems Engineering, culminating in advanced research on transcritical CO₂ heat pumps and ground-source heat pump thermodynamics. Professionally, he serves as a Lecturer at Süleyman Demirel University’s Renewable Energy Research Center (YEKARUM), contributing to national and international research projects, including biogas reactor design and hybrid energy storage systems. His research interests encompass energy and exergy analysis, thermodynamic cycle optimization (Kalina, ORC, Brayton, and Rankine cycles), AI-assisted energy modeling, phase-change materials for energy storage, and sustainable cooling and heating technologies. Dr. Elbır possesses strong research skills in experimental and theoretical thermodynamic analysis, Python and AI-based simulation, fuzzy logic modeling, energy system optimization, and environmental impact assessment of industrial processes. His extensive publication record includes articles in top-tier journals such as Applied Thermal Engineering, Journal of Building Engineering, Environmental Progress & Sustainable Energy, and multiple international conference proceedings, alongside chapters in scientific books on renewable energy and thermodynamic systems. He has also contributed to editorial work at YEKARUM and actively mentors students in energy research projects. Recognized for his scientific contributions, Dr. Elbır has received accolades for innovative approaches in energy efficiency and sustainable system design. His leadership in research, academic service, and community engagement underscores his commitment to advancing renewable energy solutions and mentoring the next generation of engineers. Dr. Elbır’s growing academic impact is reflected in 12 citations, 18 documents, and an h-index of 2, demonstrating his sustained influence in energy systems and renewable energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Akarslan, K. F., Elbır, A., & Şahin, M. E. (2023). Wool drying process in heat-pump-assisted dryer by fuzzy logic modelling. Thermal Science, 27(4 Part B), 3043–3050. Cited by 6

2. Öztürk, M., Elbır, A., & Özek, N. (2011). Akdeniz bölgesine gelen güneş radyasyonunun ekserji analizi. In Proc. 6th International Advanced Technologies Symposium (IATS’11). Cited by 6

3. Öztürk, M., Elbır, A., Özek, N., & Yakut, A. K. (2011). Güneş hidrojen üretim metotlarının incelenmesi. 6th International Advanced Technologies Symposium (IATS’11), 16–18. Cited by 5

4. Elbır, A. (2010). Toprak kaynaklı ısı pompasının termodinamik analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü. Cited by 5

5. Elbır, A., Kodaloğlu, F. A., Üçgül, İ., & Şahin, M. E. (2022). Thermodynamic analysis of refrigerants used in ORC-VCC combined power systems for low temperature heat sources. Thermal Science, 26(4 Part A), 2855–2863. Cited by 4

Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Mr. Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Lecturer and Bioenergy research group coordinator | Bahir Dar University | Ethiopia

Mr. Tesfa Nega Gesese is a Lecturer and Bioenergy Research Group Coordinator at Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia, with over seven years of teaching and research experience. He holds an M.Sc. in Chemical Engineering and has built a strong academic foundation in renewable energy, waste valorisation, and greenhouse gas mitigation. His professional experience includes serving as a lecturer, course chair, and project leader, where he has coordinated large-scale research initiatives such as the mega project on integrated production of bioethanol, bio-hydrogen, and biogas from sesame stalk feedstock, as well as thematic research on computational modelling of anaerobic digestion and photosynthetic algae integration. His research interests span biomass valorisation, biofuels, pyrolysis, gasification, bio-composite materials, and sustainable energy systems. He has demonstrated advanced research skills in biomass pyrolysis kinetics, waste-to-energy conversion, and the development of renewable energy pathways tailored to local resources. Mr. Tesfa has authored and co-authored more than 15 peer-reviewed publications indexed in Scopus and Web of Science, focusing on biomass conversion technologies, bio-based materials, and environmental sustainability. His leadership role as a bioenergy research coordinator has enabled him to foster collaborative research, mentor young scholars, and deliver impactful solutions addressing Ethiopia’s energy challenges. He has also contributed to the scientific community as a reviewer for international journals and as a member of the Society of Ethiopian Chemical Engineers. His dedication to research excellence has earned recognition through funded research projects and academic achievements that align with global sustainability goals. Overall, Mr. Tesfa is committed to advancing bioenergy innovation, expanding international collaborations, and influencing policy toward clean energy transitions. Mr. Tesfa Nega Gesese’s growing academic impact is reflected in 26 citations, 10 documents, and an h-index of 3, demonstrating his emerging influence in the field of bioenergy and sustainable engineering.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

1. Mersha, D. A., Gesese, T. N., Sendekie, Z. B., Admase, A. T., & Bezie, A. J. (2024). Operating conditions, products and sustainable recycling routes of aminolysis of polyethylene terephthalate (PET)–A review. Polymer Bulletin, 81(13), 11563–11579. Cited by: 20

2. Bantie, Z., Tezera, A., Abera, D., & Nega, T. (2024). Nanoclays as fillers for performance enhancement in building and construction industries: State of the art and future trends. In Developments in Clay Science and Construction Techniques. Cited by: 11

3. Gesese, T. N., Fanta, S. W., Mersha, D. A., & Satheesh, N. (2022). Physical properties and antibacterial activity of cotton fabric treated with methanolic extracts of Solanum incanum fruits and red onion peels. The Journal of The Textile Institute, 113(2), 292–302. Cited by: 6

4. Gesese, T. N., Getahun, E., & Getahun, A. A. (2024). Investigation of thermal degradation properties and chemical kinetic characteristics of biomass pyrolysis via TG/DTG and FTIR techniques: Sesame stalks as a potential source. International Journal of Energy Research, 2024(1), 8891126. Cited by: 4

5. Gesese, T. N., Getahun, E., & Getahun, A. A. (2025). Pyrolysis kinetics, thermodynamics, and reaction performance of wheat straw and water hyacinth using TGA‐DTG analysis: Bioenergy potential in Ethiopia. Biofuels, Bioproducts and Biorefining, 19(3), 705–729.  Cited by: 2