Ao Wang | Biomass | Best Researcher Award

Dr. Ao Wang | Biomass | Best Researcher Award

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry | China

Dr. Ao Wang is an Associate Research Fellow at the Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF) and currently serves as a visiting scholar at Nanyang Technological University, fostering international research collaborations. His professional expertise centers on the preparation and application of advanced functional carbon materials derived from biomass, with a particular focus on electrochemical energy storage. He has led major research projects, including national key programs and fundamental research initiatives at CAF. Dr. Wang’s contributions include elucidating the evolution mechanism of carbon microcrystals during lignin and cellulose pyrolysis, demonstrating that the isotropy of carbon crystal seeds drives the ordered growth of graphite-like microcrystals, and revealing the critical influence of catalyst-induced pore sizes on the formation of closed pore structures in energy storage carbon materials. He has published over 30 articles in high-impact journals such as Progress in Materials Science, Advanced Functional Materials, and Carbon Energy, and has been granted 8 invention patents. His research skills encompass biomass carbon material synthesis, catalytic carbonization, pore structure engineering, and electrochemical characterization for lithium-ion and sodium-ion batteries, as well as supercapacitors. Dr. Wang continues to advance the field of biomass-derived carbon materials for energy storage, demonstrating a strong commitment to sustainable energy solutions and functional material innovation, with a documented record of 1,899 citations, 99 documents, and an h-index of 24.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

Fan, M., Yuan, Q., Zhao, Y., Wang, Z., Wang, A., Liu, Y., Sun, K., Wu, J., Wang, L., … (2022). A facile “double‐catalysts” approach to directionally fabricate pyridinic N–B‐pair‐doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient … Advanced Materials, 34(13), 2107040. Cited by 163.

Fan, M., Wang, Z., Sun, K., Wang, A., Zhao, Y., Yuan, Q., Wang, R., Raj, J., Wu, J., … (2023). N–B–OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Advanced Materials, 35(17), 2209086. Cited by 150.

Wang, A., Sun, K., Xu, R., Sun, Y., Jiang, J. (2021). Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. Journal of Cleaner Production, 283, 125385. Cited by 118.

Chen, C., Sun, K., Huang, C., Yang, M., Fan, M., Wang, A., Zhang, G., Li, B., Jiang, J., … (2023). Investigation on the mechanism of structural reconstruction of biochars derived from lignin and cellulose during graphitization under high temperature. Biochar, 5(1), 51. Cited by 66.

Cao, M., Liu, Y., Sun, K., Li, H., Lin, X., Zhang, P., Zhou, L., Wang, A., Mehdi, S., … (2022). Coupling Fe3C nanoparticles and N‐doping on wood-derived carbon to construct reversible cathode for Zn–Air batteries. Small, 18(26), 2202014. Cited by 58.

 

Rifat Yildirim | Bioenergy | Best Researcher Award

Assist. Prof. Dr. Rifat Yildirim | Bioenergy | Best Researcher Award

Assistant Professor | Isparta University of Applied Sciences, Sütçüler Prof. Dr. Hasan Gürbüz Vocational School | Turkey

Assist. Prof. Dr. Rifat Yıldırım is a dedicated scholar at Isparta University of Applied Sciences, Sütçüler Prof. Dr. Hasan Gürbüz Vocational School, Türkiye, specializing in sustainable waste management, bioenergy production, and environmental biotechnology. He earned his academic qualifications with a strong foundation in environmental engineering and biotechnology, focusing on developing sustainable technologies that align with circular bioeconomy principles. Over the years, Dr. Yıldırım has gained extensive professional experience through his involvement in multiple TÜBİTAK-funded projects, including leadership roles as Principal Investigator and R&D Personnel in initiatives related to biogas production, composting systems, and biofilter development. His expertise extends to optimizing composting and anaerobic digestion processes using machine learning and multi-criteria decision-making models, which contribute to resource efficiency, carbon reduction, and energy recovery from organic wastes. Dr. Yıldırım’s research interests encompass waste-to-energy technologies, microbial ecology, environmental risk assessment, and renewable energy systems, where he applies innovative methodologies to address global sustainability challenges. His research skills include bioenergy modeling, statistical optimization, environmental monitoring, and decision-support system development, reflecting a multidisciplinary and solution-driven approach. He has published several papers in prestigious journals such as Environmental Progress & Sustainable Energy, Integrated Environmental Assessment and Management, and Engineering Applications of Artificial Intelligence, advancing the scientific understanding of sustainable waste valorization. Dr. Yıldırım has also contributed to scientific literature with books (ISBN: 978-625-398-818-0, 978-625-398-826-5) and has trained students in national environmental programs. His commitment to integrating scientific innovation with sustainability goals underscores his growing prominence in environmental science and bioenergy research. Dr. Rifat Yıldırım’s academic impact is reflected in his emerging recognition with 5 citations, 4 documents, and an h-index of 2, highlighting his promising influence in sustainable bioenergy and environmental biotechnology research.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1. Yıldırım, R. (2025, July 31). Analysis of composting methods for sustainable management of biodegradable waste using decision‐making techniques. Environmental Progress & Sustainable Energy, 1–14.

2. Yıldırım, R. (2025, June 17). Comparative analysis of alternatives for sustainable management of biodegradable waste. Integrated Environmental Assessment and Management.

3. Yıldırım, R. (2025, January 29). Machine learning applications in biogas and methane production: A bibliometric analysis. Preprint.

4. Yıldırım, R. (2025, January 9). Bibliometric analysis of biological pretreatments in biogas processes. Polish Journal of Environmental Studies, 34(2), 1439–1443.

5. Ekinci, K., Çiftçi, F., Kumbul, B. S., Yıldırım, R., Solak, M., & Çoban, V. (2023, October). Co-fermentation of macroalga Elodea canadensis in different mixing ratios with dairy manure. Biomass Conversion and Biorefinery, 13, 14185–14192.

6. Yıldırım, R. (2023, August 21). Biyogaz üretim süreçlerinde kullanılacak en uygun risk değerlendirme metodolojisinin analitik hiyerarşi prosesi ile belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12, 1130–1140.

Renjith Krishnan | Bioenergy | Young Researcher Award

Dr. Renjith Krishnan | Bioenergy | Young Researcher Award   

R&D Engineer | Nasser S. Al Hajri Corporation | United Arab Emirates

Dr. Renjith Krishnan is a distinguished mechanical engineer and educator with nearly a decade of experience in science and engineering, specializing in sustainable energy, waste management, biofuel production, lithium-ion batteries, and Industry 5.0 applications. He earned his Ph.D. in Mechanical Engineering from the National Institute of Technology Mizoram, India (2022), with a thesis on the production, characterization, and testing of bamboo biodiesel in a variable compression ratio engine. He also holds an M.Tech in Computer Integrated Manufacturing from the University of Calicut (2015) and a B.Tech in Mechanical Engineering from the University of Kerala (2013). Dr. Krishnan has served in multiple academic and industry roles, including Assistant Professor positions at Saveetha Engineering College, Madanapalle Institute of Technology & Science, and SHM Engineering College, as well as R&D Piping Engineer at Nasser S. Al Hajri Corporation, UAE. His research interests encompass biofuels, biomass gasification, lithium extraction, machine learning for sustainability, and clean energy systems. He possesses strong research skills in experimental design, process optimization, computational modeling, and data analysis using tools such as Ansys, SolidWorks, Origin, and Python. Dr. Krishnan has an impressive publication record, including Q1 and Q2 journals such as Cleaner Engineering and Technology, Energy Science & Engineering, and Environmental Science and Pollution Research, along with 14 patents in areas ranging from water flow measurement to portable air purifiers. He actively contributes to professional communities as a member of the World Society of Sustainable Energy Technologies and AICTSD and has completed certifications in AI, Python, and Product Management. Dr. Krishnan is committed to mentoring students and fostering innovation in academia and industry. He is the recipient of multiple recognitions for his teaching and research. His growing academic impact is reflected in 80 citations, 9 documents, and an h-index of 4, demonstrating his significant and sustained influence in the field of sustainable energy and mechanical engineering.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

1. Krishnan, R., & Gopan, G. (2024). A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Cleaner Engineering and Technology, 20, 100749. Cited by: 64

2. Krishnan, R., Hauchhum, L., Gupta, R., & Pattanayak, S. (2018). Prediction of equations for higher heating values of biomass using proximate and ultimate analysis. In 2nd International Conference on Power, Energy and Environment: Towards Smart Technology. IEEE.  Cited by: 28

3. Gopan, G., Hauchhum, L., Pattanayak, S., Kalita, P., & Krishnan, R. (2022). Prediction of species concentration in syngas produced through gasification of different bamboo biomasses: A numerical approach. International Journal of Energy and Environmental Engineering, 13(4), 1383–1394. Cited by: 9

4. Krishnan, R., Hauchhum, L., Gupta, R., & Gopan, G. (2022). Production and characterisation of biodiesel extracted from Indian bamboos. International Journal of Oil, Gas and Coal Technology, 31(3), 316–331. Cited by: 6

5. Gopan, G., Hauchhum, L., Kalita, P., Krishnan, R., & Pattanayak, S. (2021). Parametric study of tapered fluidized bed reactor under varied taper angle using TFM. AIP Conference Proceedings, 2396(1), 020020. Cited by: 4