Xudong Jing | Sustainable Agriculture | Research Excellence Award

Assoc. Prof. Dr. Xudong Jing | Sustainable Agriculture | Research Excellence Award

Associate Professor | Shihezi University | China

Dr. Xudong Jing is an emerging environmental scientist whose research advances the sustainable utilization of agricultural waste resources and the mechanistic understanding of straw-derived materials in soil systems. His work focuses on how long-term straw and cotton-stalk return affects the sorption, degradation, transformation, and environmental fate of pesticides, herbicides, and antibiotics, aiming to support safer agricultural practices and more resilient soil environments. Through publications in leading outlets such as Journal of Hazardous Materials, Chemical Engineering Journal, and Agronomy, he has demonstrated how chemical, alkaline, and oxidative pretreatments can accelerate straw decomposition, enhance the formation of high-adsorption straw residues, and ultimately influence pollutant mobility and persistence in agroecosystems. His contributions extend to the development of functionalized cotton-stalk–derived materials designed to improve saline soils by increasing salt adsorption and water retention—an important advancement for arid and semi-arid regions. Dr. Jing’s work also interfaces with applied environmental engineering, contributing to improved pollutant removal mechanisms and soil amendment strategies. He serves as Principal Investigator for a National Natural Science Foundation of China (Regional) project examining pesticide biodegradation under long-term cotton-stalk return, and he leads multiple national-level laboratory open funds addressing herbicide residue behavior and the creation of salt-controlling biomass materials. Collectively, his research strengthens the scientific basis for agricultural residue valorization, soil remediation, and green agricultural development. Dr. Jing’s academic influence and research productivity are reflected in his metrics 189 citations, 9 documents, and an h-index of 8.

Profile: Scopus

Featured Publication

1. Jing, X., Liu, T., Chai, X., Wang, Y., & Cai, X. (2023). Persulfate pretreatment facilitates decomposition of maize straw in soils and accumulation of straw residues with high adsorption capacity. Chemical Engineering Journal, 475, 145956. Cited 11.

Alamgir Muhammad | Green Finance | Best Researcher Award

Dr. Alamgir Muhammad | Green Finance | Best Researcher Award

Assistant Professor | Nicolaus Copernicus University in Torun | Poland

Dr. Alamgir Muhammad is an emerging scholar in corporate finance, sustainable investment, and green financial instruments, currently serving as an Assistant Professor (Research) at Nicolas Copernicus University in Toruń, Poland. He completed his Ph.D. in Corporate Finance and Investment at National Chung Cheng University, Taiwan, where he also contributed to teaching and academic activities. His research focuses on green bonds, corporate sustainability, Islamic finance, financial markets, firm performance, and market stability, with publications in leading journals such as Sustainable Development, Studies in Economics and Finance, Global Business and Finance Review, Sustainability, Risks, and the International Journal of Islamic Finance and Sustainable Development. His work offers empirical insights into how green bonds influence firm performance, cost of capital, financial risk, and environmental outcomes, while also analyzing the comparative behavior of Islamic and conventional stock markets during crises. Dr. Alamgir is an active reviewer for reputable journals including Sustainable Development, Financial Innovation, Finance Research Letters, and the Review of Pacific Basin Financial Markets and Policies, demonstrating his growing global academic engagement. He has presented his research at major international conferences across Europe, Asia, and North America, contributing to ongoing scholarly discourse on sustainable finance, the energy transition, and financial market resilience. Dr. Alamgir’s academic influence and research productivity are reflected in his metrics 124 citations and an h-index of 3, underscoring his expanding contributions to global sustainable finance research.

Profiles: Google Scholar | ORCID

Featured Publications

1. Alamgir, M., & Cheng, M.-C. (2023). Do green bonds play a role in achieving sustainability? Sustainability, 15(13), 10177. Citations: 97

2. Alamgir, M., & Cheng, M.-C. (2023). Co-movement and performance comparison of conventional and Islamic stock indices during the pre- and post-COVID-19 pandemic era. Risks, 11(8), 146. Citations: 13

3. Alamgir, M., & Cheng, M.-C. (2021). Effect of leverage on firm value and how the contextual variables affect this relationship: A case of Pakistan. Citations: 9

4. Alamgir, M., & Cheng, M.-C. (2023). Do Islamic stocks outperform conventional stocks during crisis periods? A global comparison. Global Business & Finance Review, 28(6), 23–47. Citations: 3

5. Alamgir, M., & Cheng, M.-C. (2024). Safe haven characteristics of Islamic stock indices during bearish and bullish markets: A case of developed and developing countries. International Journal of Islamic Finance and Sustainable Development, 16(3). Citations: 1

Yanfei Li | Green Hydrogen | Best Researcher Award

Assoc. Prof. Dr. Yanfei Li | Green Hydrogen | Best Researcher Award

Associate Professor | Shenzhen Technology University | China

Dr. Yanfei Li is a prominent scholar in energy economics, industrial policy, and technological innovation, with research spanning the full spectrum of Asia’s low-carbon transition. His work covers hydrogen energy systems, new energy vehicle deployment, green fuel trade, regional gas markets, and cross-border electricity market design, while also addressing broader themes such as technological catch-up, industrial upgrading, and innovation policy in emerging economies. Dr. Li has played significant roles in various interdisciplinary and policy-driven research initiatives, collaborating with leading institutions, regional forums, and intergovernmental organizations across East and Southeast Asia. His contributions include formulating ASEAN’s hydrogen energy development roadmap, assessing large-scale green hydrogen demonstration projects, evaluating China’s green hydrogen trade potential, and analyzing the economic value and carbon mitigation impacts of hydrogen fuel cell vehicles. He has also undertaken extensive studies on integrated regional electricity systems, market mechanisms for multilateral power trade, energy infrastructure planning, and strategic pathways for achieving sustainable industrial competitiveness. Dr. Li’s scholarship is characterized by rigorous quantitative modelling, techno-economic assessment, and policy-oriented analysis, consistently bridging academic research with real-world energy planning and strategic decision-making. His academic output includes 29 peer-reviewed journal articles, books, and institutional reports, many published in high-impact outlets such as Energy Policy, International Journal of Hydrogen Energy, Energy Economics, Energy for Sustainable Development, Renewable Energy, and Journal of Cleaner Production. Several of his publications have been recognized as ESI Highly Cited Papers and ESI Hot Papers, reflecting their influence on both scholarly debates and policymaking communities. His research continues to shape regional discourse on hydrogen commercialization, sustainable transport transitions, green industrial development, and long-term energy security strategies across Asia. Dr. Li’s academic influence and research productivity are reflected in his metrics 1,235 citations, 29 documents, and an h-index of 13, underscoring his substantial contributions to global energy and technology policy research.

Profiles: Google Scholar | Scopus | ORCID 

Featured Publications

1. Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703.

2. Shi, X., Liao, X., & Li, Y. (2020). Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework. Renewable Energy, 154, 786–796.

3. Li, Y., & Kimura, S. (2021). Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios. Energy Policy, 148, 111980.

4. Khanna, R. A., Li, Y., Mhaisalkar, S., Kumar, M., & Liang, L. J. (2019). Comprehensive energy poverty index: Measuring energy poverty and identifying micro-level solutions in South and Southeast Asia. Energy Policy, 132, 379–391.

5. Li, Y., Shi, X., & Phoumin, H. (2022). A strategic roadmap for large-scale green hydrogen demonstration and commercialisation in China: A review and survey analysis. International Journal of Hydrogen Energy, 47(58), 24592–24609.

Monica Alvarez Manso | Green Hydrogen | Editorial Board Member

Ms. Monica Alvarez Manso | Green Hydrogen | Editorial Board Member

Universidad de León | Spain

Mónica Alvarez Manso is a researcher and energy engineering specialist whose work spans green hydrogen technologies, bioenergy systems, renewable energy integration, and sustainable water resource management, with extensive experience in designing, coordinating, and executing complex energy and infrastructure projects involving electrolysis-based hydrogen production, advanced water purification and demineralization systems, biomethane upgrading, and large-scale power generation and high-voltage substation facilities. Her professional contributions include implementing energy efficiency and industrial sustainability strategies for major international organizations, designing renewable energy systems for rural electrification in Africa, and developing innovative water management and pumping solutions across Europe. As a PhD candidate at the University of León and Vice-Dean of the Official College of Technical Mining Engineers and Mining and Energy Graduates, she plays a strategic leadership role in driving technological innovation, promoting sustainable engineering practices, and leading multidisciplinary teams in the mining, energy, and advanced materials sectors. She has contributed to competitive research initiatives such as ECOH2JET and BIOWATERING and has extensive experience in preparing and managing European and national funding proposals under Horizon 2020, LIFE, PRIMA, Eurostars, and the Innovation Fund. Her technological innovations include the registration of HYDROGREENSIM, a simulator for optimizing water purification processes in renewable hydrogen plants, and the patented VIRTUAL ART PROJECTION technique. Through collaborations with academic institutions, industry partners, and innovation-driven organizations, she has advanced scientific dissemination through publications, conferences, and the development of practical engineering tools, with her work collectively supporting the transition to low-carbon systems, circular bioeconomy solutions, and sustainable industrial development at regional and global scales.

Profiles: Google Scholar 

Featured Publications

1. Álvarez-Manso, M., Búrdalo-Salcedo, G., & Fernández-Raga, M. (2025). Classification framework for hydrological resources for sustainable hydrogen production with a predictive algorithm for optimization. Hydrogen, 6(3), 54.

2. Álvarez-Manso, M. (2002). Estudio de viabilidad de una instalación de energía eléctrica combinada con un proceso de termólisis.

Brenda Yanin Azcárraga Salinas | Bioenergy | Best Researcher Award

Prof. Brenda Yanin Azcárraga Salinas | Bioenergy | Best Researcher Award

PhD student | Instituto Politécnico Nacional | Mexico

Dr. Brenda Yanin Azcárraga Salinas is a distinguished biotechnology researcher specializing in microalgal bioprocesses, environmental biotechnology, and the circular bioeconomy. Her work focuses on transforming agro-industrial and livestock residues into biodiesel, bioactive compounds, and biostimulants, contributing to sustainable energy production and waste valorization. With a strong foundation in analytical chemistry and applied biotechnology, she combines precision in techniques such as HPLC, GC-MS, FTIR, and UV-Vis spectroscopy with innovative approaches to green process design. Her research explores the production of value-added compounds from Scenedesmus obliquus and Chlorella vulgaris cultivated in organic waste-based media, the generation of phytohormones through anaerobic digestion, and the development of biofertilizers derived from microalgal biomass. She has authored and co-authored multiple peer-reviewed publications on renewable bioenergy, green chemistry, and sustainable agriculture, collaborating with national and institutional research networks to advance environmental biotechnology and clean energy innovations. Through her interdisciplinary work, she promotes the development of circular, low-carbon solutions aligned with global sustainability goals. Dr. Azcárraga’s academic excellence and research influence are reflected in her growing global recognition, with 1,117 citations, 33 publications, and an h-index of 9, underscoring her impactful contributions to the advancement of environmental biotechnology and circular bioeconomy.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate 

Featured Publications

1. Solís, M., Solís, A., Pérez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: A review. Process Biochemistry, 47(12), 1723–1748. Cited by: 1,026

2. Butrón, E., Juárez, M. E., Solis, M., Teutli, M., González, I., & Nava, J. L. (2007). Electrochemical incineration of indigo textile dye in filter-press-type FM01-LC electrochemical cell using BDD electrodes. Electrochimica Acta, 52(24), 6888–6894. Cited by: 101

3. Solís-Oba, M., Ugalde-Saldívar, V. M., González, I., & Viniegra-González, G. (2005). An electrochemical–spectrophotometrical study of the oxidized forms of the mediator 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) produced by immobilized laccase. Journal of Electroanalytical Chemistry, 579(1), 59–66. Cited by: 97

4. Solís-Oba, M., Teniza-García, O., Rojas-López, M., & Delgado-Macuil, R. (2011). Application of infrared spectroscopy to the monitoring of lactose and protein from whey after ultra and nano filtration process. Journal of the Mexican Chemical Society, 55(3), 190–193. Cited by: 37

5. Castro Rivera, R., Solís Oba, M. M., Chicatto Gasperín, V., & Solís Oba, A. (2020). Producción de biogás mediante codigestión de estiércol bovino y residuos de cosecha de tomate (Solanum lycopersicum L.). Revista Internacional de Contaminación Ambiental, 36(3), 529–539. Cited by: 34

Dr. Brenda Yanin Azcárraga Salinas advances sustainable biotechnology by transforming organic waste into renewable energy and high-value bioproducts, fostering circular bioeconomy solutions that mitigate environmental impact. Her research bridges science and industry, driving global innovation in green technologies and sustainable resource management.

Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Dr. Zhenghao Yang | Carbon Neutral Technologies | Young Scientist Award

Doctor | Air Force Engineering University | China

Dr. Zhenghao Yang is a distinguished researcher at the Air Force Engineering University, Xi’an, China, specializing in advanced combustion systems, energy conversion efficiency, and sustainable propulsion technologies. With 16 publications, 113 citations, and an h-index of 6, he has established a growing academic presence in renewable and green energy research. His work focuses on optimizing combustion and energy conversion mechanisms under specialized and extreme operating conditions, particularly for high-altitude applications in aerospace systems. A notable example of his research is the study titled “Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel” (Renewable Energy, 2026), which exemplifies his innovative efforts in integrating hydrogen-based propulsion technologies as sustainable alternatives to traditional fossil-fuel engines. His expertise encompasses computational fluid dynamics (CFD), thermodynamic modeling, performance optimization, and hybrid energy system integration, contributing to advancements in energy efficiency and emission reduction. Collaborating with 18 co-authors across various institutions, Dr. Yang demonstrates strong interdisciplinary engagement that connects mechanical engineering, renewable energy, and environmental sustainability. His research holds significant relevance for both aviation and defense sectors, addressing global challenges related to clean energy utilization, decarbonization, and eco-efficient propulsion. Through his continued exploration of hydrogen-fueled engines and high-performance energy systems, Dr. Zhenghao Yang contributes meaningfully to the worldwide transition toward sustainable energy technologies and low-carbon innovation, positioning himself as a promising leader in the field of green propulsion research.

Profile: Scopus | ORCID | ResearchGate

Featured Publications

1. Yang, Z., Jia, G., Fang, Z., Du, Y., He, G., & Wang, Z. (2026). Optimization research of combustion and energy conversion efficiency of elliptical rotary engine at high altitude using green hydrogen fuel. Renewable Energy.

2. Yang, Z., Du, Y., Jia, G., Gao, X., Fang, Z., He, G., & Wang, Z. (2025). Clean combustion of a hydrogen-doped elliptical rotary engine based on turbulent jet ignition: Synergistic enhancement of thermodynamic and emission performance via flow field coupling. Energy Conversion and Management.

3. Yang, Z., Du, Y., Jia, G., Gao, X., He, G., & Wang, Z. (2025). Effect of multi-hole passive jet ignition on thermodynamic and combustion characteristics of hydrogen-doping elliptical rotary engine in high-altitude environment. Energy.

4. Yang, Z., Jia, G., Du, Y., Fang, Z., Gao, X., He, G., & Wang, Z. (2025). Investigation of high-tumble chamber of ammonia-hydrogen fueled elliptical rotary engine based on turbulence and combustion characteristics. Fuel.

5. Du, Y., Yang, Z., Zhang, Z., Wang, Z., He, G., Wang, J., & Zhao, P. (2024). Control strategy optimization exploration of a novel hydrogen-fed high-efficiency X-type rotary engine hybrid power system by coupling with recuperative organic Rankine cycle. Energy.

Dr. Zhenghao Yang’s research advances the development of clean, high-efficiency hydrogen-fueled rotary engines, contributing to global decarbonization, sustainable aviation, and next-generation propulsion technologies. His innovative work bridges energy science and engineering, fostering breakthroughs that support a greener and more energy-efficient future for society and industry alike.

Ahmet Elbir | Renewable Energy | Best Researcher Award

Dr. Ahmet Elbir | Renewable Energy | Best Researcher Award

Süleyman Demirel University | Turkey

Dr. Ahmet Elbır, Ph.D. in Energy Systems from Süleyman Demirel University (2021), is a distinguished academic and researcher specializing in thermodynamic systems, renewable energy, and sustainable energy optimization. His educational background includes multiple degrees in Mechanical Engineering and Energy Systems Engineering, culminating in advanced research on transcritical CO₂ heat pumps and ground-source heat pump thermodynamics. Professionally, he serves as a Lecturer at Süleyman Demirel University’s Renewable Energy Research Center (YEKARUM), contributing to national and international research projects, including biogas reactor design and hybrid energy storage systems. His research interests encompass energy and exergy analysis, thermodynamic cycle optimization (Kalina, ORC, Brayton, and Rankine cycles), AI-assisted energy modeling, phase-change materials for energy storage, and sustainable cooling and heating technologies. Dr. Elbır possesses strong research skills in experimental and theoretical thermodynamic analysis, Python and AI-based simulation, fuzzy logic modeling, energy system optimization, and environmental impact assessment of industrial processes. His extensive publication record includes articles in top-tier journals such as Applied Thermal Engineering, Journal of Building Engineering, Environmental Progress & Sustainable Energy, and multiple international conference proceedings, alongside chapters in scientific books on renewable energy and thermodynamic systems. He has also contributed to editorial work at YEKARUM and actively mentors students in energy research projects. Recognized for his scientific contributions, Dr. Elbır has received accolades for innovative approaches in energy efficiency and sustainable system design. His leadership in research, academic service, and community engagement underscores his commitment to advancing renewable energy solutions and mentoring the next generation of engineers. Dr. Elbır’s growing academic impact is reflected in 12 citations, 18 documents, and an h-index of 2, demonstrating his sustained influence in energy systems and renewable energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Akarslan, K. F., Elbır, A., & Şahin, M. E. (2023). Wool drying process in heat-pump-assisted dryer by fuzzy logic modelling. Thermal Science, 27(4 Part B), 3043–3050. Cited by 6

2. Öztürk, M., Elbır, A., & Özek, N. (2011). Akdeniz bölgesine gelen güneş radyasyonunun ekserji analizi. In Proc. 6th International Advanced Technologies Symposium (IATS’11). Cited by 6

3. Öztürk, M., Elbır, A., Özek, N., & Yakut, A. K. (2011). Güneş hidrojen üretim metotlarının incelenmesi. 6th International Advanced Technologies Symposium (IATS’11), 16–18. Cited by 5

4. Elbır, A. (2010). Toprak kaynaklı ısı pompasının termodinamik analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü. Cited by 5

5. Elbır, A., Kodaloğlu, F. A., Üçgül, İ., & Şahin, M. E. (2022). Thermodynamic analysis of refrigerants used in ORC-VCC combined power systems for low temperature heat sources. Thermal Science, 26(4 Part A), 2855–2863. Cited by 4

Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Mr. Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Lecturer and Bioenergy research group coordinator | Bahir Dar University | Ethiopia

Mr. Tesfa Nega Gesese is a Lecturer and Bioenergy Research Group Coordinator at Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia, with over seven years of teaching and research experience. He holds an M.Sc. in Chemical Engineering and has built a strong academic foundation in renewable energy, waste valorisation, and greenhouse gas mitigation. His professional experience includes serving as a lecturer, course chair, and project leader, where he has coordinated large-scale research initiatives such as the mega project on integrated production of bioethanol, bio-hydrogen, and biogas from sesame stalk feedstock, as well as thematic research on computational modelling of anaerobic digestion and photosynthetic algae integration. His research interests span biomass valorisation, biofuels, pyrolysis, gasification, bio-composite materials, and sustainable energy systems. He has demonstrated advanced research skills in biomass pyrolysis kinetics, waste-to-energy conversion, and the development of renewable energy pathways tailored to local resources. Mr. Tesfa has authored and co-authored more than 15 peer-reviewed publications indexed in Scopus and Web of Science, focusing on biomass conversion technologies, bio-based materials, and environmental sustainability. His leadership role as a bioenergy research coordinator has enabled him to foster collaborative research, mentor young scholars, and deliver impactful solutions addressing Ethiopia’s energy challenges. He has also contributed to the scientific community as a reviewer for international journals and as a member of the Society of Ethiopian Chemical Engineers. His dedication to research excellence has earned recognition through funded research projects and academic achievements that align with global sustainability goals. Overall, Mr. Tesfa is committed to advancing bioenergy innovation, expanding international collaborations, and influencing policy toward clean energy transitions. Mr. Tesfa Nega Gesese’s growing academic impact is reflected in 26 citations, 10 documents, and an h-index of 3, demonstrating his emerging influence in the field of bioenergy and sustainable engineering.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

1. Mersha, D. A., Gesese, T. N., Sendekie, Z. B., Admase, A. T., & Bezie, A. J. (2024). Operating conditions, products and sustainable recycling routes of aminolysis of polyethylene terephthalate (PET)–A review. Polymer Bulletin, 81(13), 11563–11579. Cited by: 20

2. Bantie, Z., Tezera, A., Abera, D., & Nega, T. (2024). Nanoclays as fillers for performance enhancement in building and construction industries: State of the art and future trends. In Developments in Clay Science and Construction Techniques. Cited by: 11

3. Gesese, T. N., Fanta, S. W., Mersha, D. A., & Satheesh, N. (2022). Physical properties and antibacterial activity of cotton fabric treated with methanolic extracts of Solanum incanum fruits and red onion peels. The Journal of The Textile Institute, 113(2), 292–302. Cited by: 6

4. Gesese, T. N., Getahun, E., & Getahun, A. A. (2024). Investigation of thermal degradation properties and chemical kinetic characteristics of biomass pyrolysis via TG/DTG and FTIR techniques: Sesame stalks as a potential source. International Journal of Energy Research, 2024(1), 8891126. Cited by: 4

5. Gesese, T. N., Getahun, E., & Getahun, A. A. (2025). Pyrolysis kinetics, thermodynamics, and reaction performance of wheat straw and water hyacinth using TGA‐DTG analysis: Bioenergy potential in Ethiopia. Biofuels, Bioproducts and Biorefining, 19(3), 705–729.  Cited by: 2

 

Muhammad Ali Shahbaz | Bioenergy | Best Researcher Award

Dr. Muhammad Ali Shahbaz | Bioenergy | Best Researcher Award

Assistant Professor | University of Engineering and Technology | Pakistan

Dr.-Ing. Muhammad Ali Shahbaz is an accomplished academic and researcher in Mechanical Engineering, currently serving as an Assistant Professor at the Automotive Engineering Centre, University of Engineering and Technology (UET) Lahore, Pakistan. He earned his Ph.D. in Mechanical Engineering from the University of Duisburg-Essen, Germany, where his research focused on developing advanced endoscopic optical diagnostics for combustion engines, including temperature imaging, fuel film analysis, and soot incandescence studies. His M.Sc. research involved visualization of flame fronts using OH*-chemiluminescence and LIF techniques, and he holds a B.Sc. in Mechanical Engineering from UET Lahore with a thesis on biodiesel synthesis and engine performance. Professionally, he has over 14 years of teaching and research experience, having supervised multiple master’s and bachelor’s theses, reviewed and developed graduate curricula, and advised government agencies on EV policy and emissions testing standards. His research interests span optical diagnostics for internal combustion engines, alternative fuels, pyrolysis for bio-oil and biochar, waste-to-energy technologies, renewable energy systems, and integrated solid waste management. He possesses strong experimental and analytical skills in LIF, chemiluminescence, soot imaging, MATLAB, instrumentation, and pyrolysis systems. Dr. Shahbaz has contributed to major projects including EU Horizon 2020 research, biodiesel optimization funded by HEC Pakistan, and vibration analysis for electric vehicle development. His work is widely published in reputed journals such as Applied Optics, Experiments in Fluids, and Energy Science & Engineering and presented at global conferences including the Gordon Research Conference and European Combustion Meeting. He is the recipient of multiple awards including the Best Teacher Award and DAAD Scholarship. His growing academic impact is reflected in 2,940 citations, 139 documents, and an h-index of 31, demonstrating his significant and sustained influence in the field of combustion diagnostics and sustainable energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Munir, M. A., Habib, M. S., Hussain, A., Shahbaz, M. A., Qamar, A., Masood, T., Sultan, M., Mujtaba, M. A., Imran, S., Hasan, M., Akhtar, M. S., Ayub, H. M. U., & Salman, C. A. (2022). Blockchain adoption for sustainable supply chain management: Economic, environmental, and social perspectives. Frontiers in Energy Research, 10, 899632. (Cited by 150)

2. Razzaq, L., Mujtaba, M. A., Shahbaz, M. A., Nawaz, S., Khan, H. M., Hussain, A., & others. (2022). Effect of biodiesel–dimethyl carbonate blends on engine performance, combustion and emission characteristics. Alexandria Engineering Journal, 61(7), 5111–5121.  (Cited by 33)

3. Nawaz, A., Ahmed, Z., Shahbaz, A., Khan, Z., & Javed, M. (2014). Coagulation–flocculation for lignin removal from wastewater – A review. Water Science and Technology, 69(8), 1589–1597. (Cited by 27)

4. Shahbaz, M. A., Jüngst, N., Grzeszik, R., & Kaiser, S. A. (2021). Endoscopic fuel film, chemiluminescence, and soot incandescence imaging in a direct-injection spark-ignition engine. Proceedings of the Combustion Institute, 38(4), 5869–5877. (Cited by 12)

5. Nawaz, A., Shahbaz, M. A., & Javed, M. (2015). Management of organic content in municipal solid waste – A case study of Lahore. International Journal of Environment and Waste Management, 15(1), 15–23. (Cited by 8)