Masood Ebrahimi | Renewable Energy Systems | Editorial Board Member

Assoc. Prof. Dr. Masood Ebrahimi | Renewable Energy Systems | Editorial Board Member

Faculty member | University of Kurdistan | Iran

Dr. Masood Ebrahimi is an Associate Professor of Mechanical Engineering at the University of Kurdistan, specializing in renewable and hybrid energy systems aimed at achieving a sustainable transition to Net Zero Emissions by 2050. His research integrates solar, wind, and hydropower technologies with fuel cells, electrolyzers, thermoelectric materials, and advanced energy management systems to produce clean power, hydrogen, desalinated water, and efficient heating/cooling solutions. He applies multi-criteria decision-making algorithms and AI-driven predictive models to optimize energy systems across technical, economic, and environmental dimensions. Dr. Ebrahimi obtained his Ph.D. in Mechanical Engineering–Energy Conversion from K. N. Toosi University of Technology, where he developed a pioneering model for solar-based combined cooling, heating, and power (CCHP) systems across diverse climatic zones, leading to publications in prestigious Q1 journals such as Energy, Energy and Buildings, and the Journal of Cleaner Production, along with an Elsevier book titled Combined Cooling Heating and Power: Decision-Making, Design, and Optimization. With extensive academic and professional experience, he has made significant contributions to sustainable energy development, AI-based energy optimization, and industry-academia collaborations, serving in key leadership roles including Director of the Mechanical Engineering Department, Founder of the Energy Systems Laboratory, and member of several national technical and green management committees. His international collaboration with Dublin City University (Ireland) on the Life Cycle Assessment and Carbon Footprint of Bitcoin Mining using Trigeneration Systems advances the understanding of environmental impacts in emerging technologies. Dr. Ebrahimi’s prolific academic output encompasses numerous peer-reviewed journal articles, books, and conference papers, emphasizing practical and policy-oriented solutions for global clean energy transitions. His academic excellence and research influence are reflected in his growing recognition, with 1,053 citations, 33 publications, and an h-index of 16, underscoring his impactful contributions to renewable energy systems and sustainable technological innovation.

Featured Publications

1. Ebrahimi, M., & Moradpoor, I. (2016). Combined solid oxide fuel cell, micro-gas turbine and organic Rankine cycle for power generation (SOFC–MGT–ORC). Energy Conversion and Management, 116, 120–133. Cited by: 186

2. Ebrahimi, M., & Keshavarz, A. (2014). Combined cooling, heating and power: Decision-making, design and optimization. Elsevier.
Cited by: 160

3. Ebrahimi, M., & Keshavarz, A. (2013). Sizing the prime mover of a residential micro-combined cooling, heating and power (CCHP) system by multi-criteria sizing method for different climates. Energy, 54, 291–301. Cited by: 147

4. Ebrahimi, M., Keshavarz, A., & Jamali, A. (2012). Energy and exergy analyses of a micro-steam CCHP cycle for a residential building. Energy and Buildings, 45, 202–210. Cited by: 122

5. Ebrahimi, M., & Derakhshan, E. (2018). Design and evaluation of a micro combined cooling, heating, and power system based on polymer exchange membrane fuel cell and thermoelectric cooler. Energy Conversion and Management, 171, 507–517. Cited by: 84

Dr. Masood Ebrahimi’s pioneering research in renewable and hybrid energy systems advances sustainable technologies that drive the global transition toward Net Zero Emissions. His innovative integration of AI, fuel cells, and solar-driven CCHP systems supports cleaner industries, energy efficiency, and a more resilient low-carbon future for society.

Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Dr. Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Professor | The University of Alabama | United States

Dr. Mahdi Jahami is a dedicated researcher in the Department of Mechanical Engineering, Tuscaloosa, United States, whose work focuses on renewable energy systems, sustainable hydrogen production, and life cycle assessment (LCA). His research aims to develop environmentally responsible energy conversion technologies by integrating renewable resources with innovative modeling and optimization frameworks. Dr. Jahami’s scholarly contributions emphasize reducing greenhouse gas emissions through cleaner production pathways and advancing the global transition toward a low-carbon, sustainable energy future. His notable publication, “Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s goals,” provides a comprehensive assessment of hydrogen generation via Steam Methane Reforming (SMR) and Electrified-SMR systems powered by renewable energy. The study delivers significant insights into optimizing hydrogen production efficiency while aligning with ambitious environmental and policy objectives. With 9 citations, 1 publication, and a Scopus h-index of 1, Dr. Jahami’s research demonstrates growing academic recognition and influence in the fields of clean energy and carbon mitigation. Through collaboration with international co-authors, he applies an interdisciplinary approach combining techno-economic analysis, emissions modeling, and renewable energy integration to design efficient, sustainable hydrogen systems. Beyond academic contributions, his work holds strong societal impact by supporting global initiatives for carbon neutrality, clean technology advancement, and sustainable industrial transformation. Through rigorous research and innovation, Dr. Jahami continues to contribute to the evolution of green engineering solutions, reinforcing the vital role of hydrogen technologies in achieving net-zero emissions and driving global energy sustainability.

Profiles: Scopus | ResearchGate | LinkedIn

Featured Publications

1. Jahami, M. (2025). Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s 2035 goals. Renewable Energy. Cited by 9.

Dr. Mahdi Jahami’s research advances the global transition toward sustainable hydrogen production and renewable energy integration, providing innovative life cycle–based solutions that reduce emissions and support carbon-neutral industrial systems. His work bridges engineering innovation and environmental responsibility, driving progress toward a cleaner, more resilient energy future.

Guanglong Ge | Energy Storage | Best Researcher Award

Dr. Guanglong Ge | Energy Storage | Best Researcher Award

Postdoctoral | Tongji University | China

Dr. Guanglong Ge is a distinguished materials scientist specializing in antiferroelectric, ferroelectric, relaxor ferroelectric, and dielectric materials, with a strong focus on energy storage performance, electrocaloric effects, piezoelectric properties, and structure–property relationships. He earned his Ph.D. in Materials Science from Tongji University, China (2017–2022), following his B.Sc. in Inorganic Materials from Chang’an University (2013–2017). Currently serving as a Postdoctoral Researcher at Tongji University, Dr. Ge leads cutting-edge investigations on the energy storage performance of antiferroelectric ceramics, supported by prestigious funding such as the Sino-German (CSC-DAAD) Postdoc Scholarship, China Postdoctoral Science Foundation, and the Shanghai Postdoctoral Excellence Program. His research contributions have significantly advanced the understanding of multilayer ceramic capacitors and field-induced structural evolution in dielectric materials. Dr. Ge’s professional experience includes participation in national and international R&D programs and collaborative projects aimed at developing high-performance energy storage materials with broad technological relevance. His key research skills encompass materials synthesis, dielectric characterization, in-situ structural analysis, and multiphysics coupling simulation, enabling him to uncover critical insights into phase transitions and energy optimization mechanisms. Recognized for his innovative contributions, Dr. Ge has published over 66 peer-reviewed papers in top journals, including Advanced Materials, Nature Communications, Science Advances, and Energy Storage Materials, and has delivered presentations at major international conferences such as the Ferroelectric International Seminar and the China–Japan Symposium on Ferroelectric Materials. His dedication has earned him multiple awards, including competitive postdoctoral fellowships and recognition for scientific excellence in dielectric research. Dr. Ge’s future research aims to pioneer next-generation sustainable energy storage technologies through interdisciplinary collaboration and advanced material design. Dr. Guanglong Ge’s academic impact is further reflected in his growing recognition with 2,662 citations, 66 documents, and an h-index of 27, demonstrating his influential role in advancing antiferroelectric ceramics and energy storage materials research.

Profiles: Scopus | ORCID

Featured Publications

1. Ge, G., Zeng, H., Qian, J., Shen, B., Cheng, Z., Zhai, J., Liu, Y., Wang, D., & He, L. (2025). Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering. Nature Communications. Citations: 7

2. Ge, G., Chen, C., Qian, J., Lin, J., Shi, C., Li, G., Wang, S., & Zhai, J. (2025). Local heterogeneous dipolar structures drive gigantic capacitive energy storage in antiferroelectric ceramics. Nature Communications. Citations: 2

3. Ge, G., Yang, J., Shi, C., Lin, J., Hao, Y., & Wei, Y. (2025). Nano-domain configuration boosting energy storage capacity of NaNbO3-based relaxor ferroelectrics. Journal of Power Sources. Citations: 1

4. Ge, G., Hao, Y., Lin, J., Shi, C., & Yao, W. (2025). Outstanding comprehensive piezoelectric properties in KNN-based ceramics via co-optimization of crystal structure and grain orientation. Acta Materialia.

5. Ge, G., Qian, J., Chen, C., Shi, C., Lin, J., Li, G., & Zhai, J. (2025). Excellent energy storage performance of polymorphic modulated antiferroelectric lead zirconate ceramic. Advanced Materials. Citations: 1