Tao Sun | Renewable Energy Systems | Best Researcher Award

Prof. Tao Sun | Renewable Energy Systems | Best Researcher Award

Professor | Northwest University | China

Dr. Tao Sun is a distinguished Professor at the School of Chemical Engineering, Northwest University, China, widely recognized for his pioneering contributions to the fields of energy conversion and environmental catalysis. His research focuses on the rational design and synthesis of nanostructured and single-atom materials for electrocatalysis, photocatalysis, water splitting, fuel cells, metal–air batteries, and CO₂ reduction. By integrating advanced concepts in atomic-level engineering, heterojunction construction, and defect chemistry, he has developed highly efficient and durable materials that address pressing global challenges in clean energy generation and pollutant degradation. Dr. Sun has authored more than ninety peer-reviewed publications, including numerous papers as first or corresponding author in internationally renowned journals such as Nature Nanotechnology, Advanced Materials, Advanced Functional Materials, ACS Nano, ACS Catalysis, and Advanced Science. His research has achieved substantial global recognition, reflected by thousands of citations and a strong h-index, underscoring his scientific influence and leadership in catalysis and materials chemistry. In addition to his prolific research output, Dr. Sun serves as a reviewer for over fifty leading international journals and contributes to the scholarly community as a youth editor for EcoEnergy, Advanced Powder Materials, and Carbon Energy. His work bridges fundamental science and applied technology, offering innovative strategies for sustainable energy conversion, carbon-neutral pathways, and environmental protection. Through his commitment to advancing catalyst design and clean energy technologies, Dr. Tao Sun continues to make impactful contributions that shape the future of green chemistry and sustainable materials engineering. Dr. Tao Sun’s academic excellence is reflected in his global research influence, with 6,780 citations, 94 publications, and an h-index of 38, highlighting his leading role in the field of materials and energy science.

Profiles: Scopus | ORCID

Featured Publications

1. Sun, T., et al. (2025). Photocatalytic H₂ evolution over Ni₃(PO₄)₂/twinned-Cd₀.₅Zn₀.₅S S-scheme homo-heterojunction using degradable plastics as electron donors. Journal of Materials Science and Technology. Citations: 8

2. Sun, T., et al. (2025). Efficient hydrogen production coupled with polylactic acid plastic electro-treatment over a CoFe LDH/MoSe₂/NixSey/NF heterostructure electrocatalyst. ACS Sustainable Chemistry & Engineering. Citations: 4

3. Sun, T., et al. (2025). Co₃S₄/MnS p–p heterojunction as a highly efficient electrocatalyst for water splitting and electrochemical oxidation of organic molecules. Journal of Colloid and Interface Science. Citations: 10

4. Sun, T., et al. (2025). Efficient photocatalytic H₂ evolution over SnS₂/twinned Mn₀.₅Cd₀.₅S hetero-homojunction with double S-scheme charge transfer routes. Journal of Materials Science and Technology. Citations: 31

5. Sun, T., et al. (2025). Tuning interfacial charge transfer for efficient photodegradation of tetracycline hydrochloride over Ti₃C₂/Bi₁₂O₁₇Cl₂ Schottky heterojunction and theoretical calculations. Applied Surface Science. Citations: 16

Dr. Tao Sun’s pioneering research in photocatalysis and electrocatalysis advances sustainable hydrogen production and plastic waste valorization, bridging clean energy generation with environmental remediation. His innovative heterostructure designs drive global progress toward carbon-neutral technologies and circular energy systems, fostering transformative impact across science, industry, and society.

Jianhua Zhou | Solar Energy | Best Researcher Award

Prof. Dr. Jianhua Zhou | Solar Energy | Best Researcher Award

Professor | Guilin University of Electric Technology | China

Prof. Jianhua Zhou, a distinguished scholar in materials science and engineering, currently serves as a Professor at the School of Materials Science and Engineering, Guilin University of Electronic Technology. He earned his B.S. in Applied Electrochemistry, M.S. in Applied Chemistry, and Ph.D. in Materials Processing Engineering from Nanjing University of Aeronautics and Astronautics, followed by a postdoctoral fellowship at Nagoya University, Japan. His professional career includes roles as Assistant Professor at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Lecturer, Associate Professor, and now full Professor at Guilin University of Electronic Technology. Prof. Zhou’s primary research interests focus on solar steam generation, thermoelectric conversion materials, lithium-ion batteries, and photothermal–thermoelectric hybrid systems. His research skills span advanced materials design, interfacial regulation, nanostructure engineering, and the development of sustainable energy harvesting and water treatment systems. He has led and participated in multiple prestigious projects funded by the National Natural Science Foundation of China, the Guangxi Science Foundation for Distinguished Young Scholars, and other national programs, advancing fundamental understanding and applications in renewable energy. Prof. Zhou has published 107 SCI/Scopus-indexed papers in leading international journals and conferences, authored the book Fundamentals of Functional Materials and Devices, and holds 12 granted patents with 20 under review. He also serves on the editorial boards of Nano Materials Science, Green Carbon, and Eco Energy, and actively contributes to international collaborations, student mentorship, and professional platforms, demonstrating both academic leadership and community engagement. His contributions have been recognized through funded research awards and professional memberships, reflecting his commitment to advancing renewable energy technologies for global sustainability. Prof. Zhou’s growing academic impact is reflected in 4,039 citations, 122 documents, and an h-index of 35, demonstrating his significant and sustained influence in materials science and renewable energy research.

Profiles: Scopus | ORCID | ResearchGate 

Featured Publications

1. Zhou, J., et al. (2025). Solar-driven interfacial evaporation coupling with photo-Fenton of floating Prussian blue/polypyrrole/paper film for volatile organic compounds-containing wastewater treatment. Separation and Purification Technology. Citations: 5

2. Zhou, J., et al. (2025). High-performance NiCu hydroxide self-supported electrode as a bifunctional catalyst for AOR and OER. Battery Energy. Citations: 2

3. Zhou, J., et al. (2025). Photo-Fenton catalyst embedded in photothermal aerogel for efficient solar interfacial water evaporation and purification. Green Carbon. Citations: 13

4. Zhou, J., et al. (2025). Carbon–MoS₂ composite loaded in poly(vinyl alcohol)–chitosan aerogel as dual-functional photothermal material for efficient water evaporation and thermal storage under solar irradiation. ACS Applied Polymer Materials.

5. Zhou, J., et al. (2025). Multicolor electrochromic electrodes with infrared emittance modulation based on WO₃ photonic crystal. Journal of Physics D: Applied Physics.