Mohsin Raza | Renewable Energy | Innovation Research Award

Dr. Mohsin Raza | Renewable Energy | Innovation Research Award

Post Doctoral Research Associate | University of Sharjah | United Arab Emirates

Dr. Mohsin Raza, Ph.D., is a distinguished researcher specializing in biomass valorization, bioenergy, green chemistry, and nanocellulose production. He is currently advancing research in sustainable material science and bio-based innovations as a Postdoctoral Research Associate at a leading research institute. His academic background and scientific expertise center on transforming agricultural and lignocellulosic wastes into high-value materials through green and energy-efficient processes. Dr. Raza’s work integrates biomass conversion technologies, lignin recovery, nanocellulose extraction, and bio-based thermal insulation development, emphasizing environmental sustainability and circular economy principles. His core research skills include thermochemical processing, biopolymer synthesis, pyrolysis kinetics, and the use of natural deep eutectic solvents for eco-friendly material synthesis. Highly skilled in advanced analytical techniques such as TGA, DSC, XRD, FTIR, GC-MS, SEM, and TEM, he also demonstrates excellence in intellectual property development, holding multiple granted U.S. patents and additional applications in the fields of biomass valorization and green solvent technologies. As a prolific author with extensive publications in high-impact Q1 journals from leading publishers, Dr. Raza’s research contributions have significantly advanced understanding in renewable energy systems, sustainable chemistry, and nanomaterial engineering. His work has been recognized through multiple innovation and sustainability awards, reflecting his leadership and creativity in promoting clean technologies. Through collaborative research and continuous innovation, Dr. Raza continues to shape the future of renewable materials and sustainable energy, contributing to global progress toward a circular bioeconomy, with a documented record of 994 citations, 28 publications, and an h-index of 14.

Profile: Google Scholar | Scopus | ORCID

Featured Publications

1. Inayat, A., & Raza, M. (2019). District cooling system via renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 107, 360–373. Cited by: 221

2. Raza, M., Abu-Jdayil, B., Al-Marzouqi, A. H., & Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats–Redfern method. Renewable Energy, 183, 67–77. Cited by: 161

3. Raza, M., Inayat, A., Ahmed, A., Jamil, F., Ghenai, C., Naqvi, S. R., Shanableh, A., & Park, Y. K. (2021). Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing. Sustainability, 13(19), 11061. Cited by: 148

4. Raza, M., Abu-Jdayil, B., Banat, F., & Al-Marzouqi, A. H. (2022). Isolation and characterization of cellulose nanocrystals from date palm waste. ACS Omega, 7(29), 25366–25379. Cited by: 102

5. Raza, M., & Abu-Jdayil, B. (2022). Cellulose nanocrystals from lignocellulosic feedstock: A review of production technology and surface chemistry modification. Cellulose, 29(2), 685–722. Cited by: 77

 

Yao-Ching Hsieh | Renewable Energy | Best Researcher Award

Prof. Yao-Ching Hsieh | Renewable Energy | Best Researcher Award

Professor | National Sun Yat-sen University | Taiwan

Prof. Yao-Ching Hsieh is a distinguished professor in the Department of Electrical Engineering at National Sun Yat-sen University, with extensive expertise in battery charging technology, power electronic converters, power factor correction, and wireless power transfer, focusing on innovative solutions for energy efficiency and grid integration of renewable energy. He has led significant research projects, including the “Wireless Battery Charging System for Under Water Vehicles” funded by the National Science and Technology Council, Taiwan, and collaborated with industry on projects such as EMI analysis of MOSFETs in adapter circuitry. Prof. Hsieh has contributed to power electronics through the development of soft-switching techniques for interleaved converters, novel charge-equalization topologies for battery strings, and center-tapped pickup winding methods to enhance wireless power transfer efficiency. An active IEEE member, he has published numerous peer-reviewed articles in SCI and Scopus-indexed journals, served in editorial capacities, and engaged in international research collaborations. His work bridges theoretical innovation and practical applications, advancing energy systems and sustainable technologies while mentoring emerging engineers. Prof. Hsieh continues to drive innovation in battery and power electronics research, contributing to energy-efficient solutions and renewable energy integration, with a documented record of 3,729 citations, 139 documents, and an h-index of 25.

Profiles: Scopus | ORCID

Featured Publications

Hsieh, Y.-C., et al. (2024). Light load analysis and topology morphing between full-/half-bridge DC-to-DC converter. International Journal of Electronics. citation-1

Hsieh, Y.-C., et al. (2023). High-efficiency bidirectional resonant WPT system for electric vehicles. International Journal of Power Electronics and Drive Systems. citations-3

Hsieh, Y.-C., et al. (Conference Paper). Light-load conversion efficiency enhancement for three-phase dual active bridge DC-DC converters. citation-1

Hsieh, Y.-C., et al. (Conference Paper). A DC power connector with voltage spike suppression. citation-1

Hsieh, Y.-C., et al. (2025). State of health estimation for LiFePO4 batteries using incremental capacity analysis. Conference Paper.

Sergei Petrenko | Solar Energy | Best Researcher Award

Prof. Dr. Sergei Petrenko | Solar Energy | Best Researcher Award

Sirius University of Science and Technology | Russia

Prof. Sergei Petrenko, born in 1968 in Kaliningrad (the Baltic), is a distinguished Doctor of Technical Sciences and Professor at Sirius University, Russia, recognized for his extensive contributions to information security and digital technologies. He graduated with honors in 1991 from Leningrad State University with a degree in mathematics and engineering, laying a solid foundation for his academic and professional journey. Over the years, Prof. Petrenko has designed and implemented critical information systems for numerous national and corporate projects, including three national Situational-Crisis Centers (RCCs), three operators of special information services (MSSP and MDR), two virtual trusted communication operators (MVNO), more than ten segments of the System for Detection, Prevention, and Elimination of the Effects of Computer Attacks (SOPCA) and the System for Detection and Prevention of Computer Attacks (SPOCA), as well as five monitoring centers for information security threats and response, including CERT, CSIRT, and two industrial CERTs for IIoT/IoT environments. His research interests encompass information security, big data technologies, cloud security, corporate and industrial Internet protection, and innovative digital economy solutions. Prof. Petrenko possesses advanced research skills in auditing corporate cybersecurity, risk management, security policy formulation, and developing methods and technologies to safeguard critical national infrastructure. He has authored and co-authored 14 monographs and practical manuals published by Springer Nature Switzerland AG, River Publishers, Peter, Athena, and DMK-Press, including works such as “Big Data Technologies for Monitoring,” “Innovation for the Digital Economy,” and “Methods and Technologies of Cloud Security,” alongside over 350 articles in leading journals and conference proceedings. His exceptional contributions to national projects have earned him the prestigious “Big ZUBR” and “Golden ZUBR” awards. Prof. Petrenko continues to lead the State Scientific School, advancing both applied and theoretical research in information security, fostering innovation, and mentoring the next generation of cybersecurity experts, with a documented record of 296 citations, 55 documents, and an h-index of 10.

Profiles: Google Scholar | Scopus| ORCID

Featured Publications

1. Balyabin, A. A., & Petrenko, S. A. (2025). Model of a blockchain platform with cyber-immunity under quantum attacks. Voprosy kiberbezopasnosti, (3), 72-82.

2. Balyabin, A., & Petrenko, S. (2025). Methodology for synthesizing quantum-resistant blockchain platforms with cyber-immunity. Voprosy kiberbezopasnosti, (4), 46-54.

3. Buchatskiy, P., Onishchenko, S., Petrenko, S., & Teploukhov, S. (2025). Methodology for assessing the technical potential of solar energy based on artificial intelligence technologies and simulation-modeling tools. Energies.

4. Olifirov, A. V., Makoveichuk, K., & Petrenko, S. (2025). Research of aspects of omnicanal approach in the industry of digital learning technologies of organizations. In [Book Title], Springer Nature Switzerland AG (Chapter).

5. Petrenko, S. A., & Alexei Petrenko. (2023). Basic Algorithms Quantum Cryptanalysis. Voprosy kiberbezopasnosti, (1), 100-115.

 

 

Derese Kebede Teklie | Renewable Energy | Best Academic Researcher Award

Dr. Derese Kebede Teklie | Renewable Energy | Best Academic Researcher Award

Researcher | Istanbul Technical University | Ethiopia

Dr. Derese Kebede Teklie is an accomplished scholar in Development and Environmental Economics with a strong focus on the intersection of green economy, institutional quality, and sustainable development in Africa. Born on August 19, 1988, in Arsi, Ethiopia, he holds a Ph.D. in Economics from Istanbul Technical University, Turkey, under the supervision of Assoc. Prof. Dr. Mete Han Yağmur. He is also pursuing a second Ph.D. in Green Economy and Sustainability at Brescia University, Italy, expanding his expertise in environmental policy and sustainable growth. Dr. Teklie earned his M.Sc. in Development Economics from Debre Markos University, Ethiopia, and a B.A. in Economics from Mekelle University. His academic journey has been enhanced by international exposure through the Erasmus Exchange Program at Istanbul Kültür University, fostering global research collaboration and cross-cultural learning. Professionally, he serves as an Assistant Researcher at Istanbul Technical University, contributing to projects on Africa’s economic growth, environmental sustainability, and green innovation. Previously, he worked as a Lecturer at Rift Valley University, Ethiopia, and held key roles in NGO project coordination and government research institutes, demonstrating his versatility across academia, research, and community development. His research interests include environmental economics, green growth, renewable energy policy, institutional development, and econometric modeling. Dr. Teklie is skilled in advanced analytical tools such as STATA, SPSS, EViews, MATLAB, Python, and CGE modeling, reflecting his technical proficiency in empirical research. His publications in Sustainability and the International Journal of Energy Economics and Policy address pressing issues in Africa’s environmental and economic transformation. Recognized for his academic dedication and contributions to sustainable development, Dr. Teklie continues to advance impactful interdisciplinary research and international collaboration. Dr. Derese Kebede Teklie’s academic impact is reflected in his growing recognition with 19 citations, 3 documents, and an h-index of 2, highlighting his emerging influence in environmental and development economics research.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1. Teklie, D. K., & Yağmur, M. H. (2024). The Role of Green Innovation, Renewable Energy, and Institutional Quality in Promoting Green Growth: Evidence from African Countries. Sustainability, 16(14), 6166.

2. Teklie, D. K., & Yağmur, M. H. (2024). Effect of Economic Growth on CO₂ Emission in Africa: Do Financial Development and Globalization Matter? International Journal of Energy Economics and Policy, 14(1), 121–140.

3. Teklie, D. K., & Doğan, B. (2024). Analyzing the Dynamics: Asymmetric Effects of Economic Growth, Technological Innovation, and Renewable Energy on Carbon Emissions in Africa. International Journal of Energy Economics and Policy, 14(5), 509–519.

4. Teklie, D. K. (2021). Rural Household Poverty and Its Determining Factors: A Poverty Analysis Using Alternative Measurement Approaches. International Journal of Advanced Research.

Guanglong Ge | Energy Storage | Best Researcher Award

Dr. Guanglong Ge | Energy Storage | Best Researcher Award

Postdoctoral | Tongji University | China

Dr. Guanglong Ge is a distinguished materials scientist specializing in antiferroelectric, ferroelectric, relaxor ferroelectric, and dielectric materials, with a strong focus on energy storage performance, electrocaloric effects, piezoelectric properties, and structure–property relationships. He earned his Ph.D. in Materials Science from Tongji University, China (2017–2022), following his B.Sc. in Inorganic Materials from Chang’an University (2013–2017). Currently serving as a Postdoctoral Researcher at Tongji University, Dr. Ge leads cutting-edge investigations on the energy storage performance of antiferroelectric ceramics, supported by prestigious funding such as the Sino-German (CSC-DAAD) Postdoc Scholarship, China Postdoctoral Science Foundation, and the Shanghai Postdoctoral Excellence Program. His research contributions have significantly advanced the understanding of multilayer ceramic capacitors and field-induced structural evolution in dielectric materials. Dr. Ge’s professional experience includes participation in national and international R&D programs and collaborative projects aimed at developing high-performance energy storage materials with broad technological relevance. His key research skills encompass materials synthesis, dielectric characterization, in-situ structural analysis, and multiphysics coupling simulation, enabling him to uncover critical insights into phase transitions and energy optimization mechanisms. Recognized for his innovative contributions, Dr. Ge has published over 66 peer-reviewed papers in top journals, including Advanced Materials, Nature Communications, Science Advances, and Energy Storage Materials, and has delivered presentations at major international conferences such as the Ferroelectric International Seminar and the China–Japan Symposium on Ferroelectric Materials. His dedication has earned him multiple awards, including competitive postdoctoral fellowships and recognition for scientific excellence in dielectric research. Dr. Ge’s future research aims to pioneer next-generation sustainable energy storage technologies through interdisciplinary collaboration and advanced material design. Dr. Guanglong Ge’s academic impact is further reflected in his growing recognition with 2,662 citations, 66 documents, and an h-index of 27, demonstrating his influential role in advancing antiferroelectric ceramics and energy storage materials research.

Profiles: Scopus | ORCID

Featured Publications

1. Ge, G., Zeng, H., Qian, J., Shen, B., Cheng, Z., Zhai, J., Liu, Y., Wang, D., & He, L. (2025). Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering. Nature Communications. Citations: 7

2. Ge, G., Chen, C., Qian, J., Lin, J., Shi, C., Li, G., Wang, S., & Zhai, J. (2025). Local heterogeneous dipolar structures drive gigantic capacitive energy storage in antiferroelectric ceramics. Nature Communications. Citations: 2

3. Ge, G., Yang, J., Shi, C., Lin, J., Hao, Y., & Wei, Y. (2025). Nano-domain configuration boosting energy storage capacity of NaNbO3-based relaxor ferroelectrics. Journal of Power Sources. Citations: 1

4. Ge, G., Hao, Y., Lin, J., Shi, C., & Yao, W. (2025). Outstanding comprehensive piezoelectric properties in KNN-based ceramics via co-optimization of crystal structure and grain orientation. Acta Materialia.

5. Ge, G., Qian, J., Chen, C., Shi, C., Lin, J., Li, G., & Zhai, J. (2025). Excellent energy storage performance of polymorphic modulated antiferroelectric lead zirconate ceramic. Advanced Materials. Citations: 1

 

Ahmet Elbir | Renewable Energy | Best Researcher Award

Dr. Ahmet Elbir | Renewable Energy | Best Researcher Award

Süleyman Demirel University | Turkey

Dr. Ahmet Elbır, Ph.D. in Energy Systems from Süleyman Demirel University (2021), is a distinguished academic and researcher specializing in thermodynamic systems, renewable energy, and sustainable energy optimization. His educational background includes multiple degrees in Mechanical Engineering and Energy Systems Engineering, culminating in advanced research on transcritical CO₂ heat pumps and ground-source heat pump thermodynamics. Professionally, he serves as a Lecturer at Süleyman Demirel University’s Renewable Energy Research Center (YEKARUM), contributing to national and international research projects, including biogas reactor design and hybrid energy storage systems. His research interests encompass energy and exergy analysis, thermodynamic cycle optimization (Kalina, ORC, Brayton, and Rankine cycles), AI-assisted energy modeling, phase-change materials for energy storage, and sustainable cooling and heating technologies. Dr. Elbır possesses strong research skills in experimental and theoretical thermodynamic analysis, Python and AI-based simulation, fuzzy logic modeling, energy system optimization, and environmental impact assessment of industrial processes. His extensive publication record includes articles in top-tier journals such as Applied Thermal Engineering, Journal of Building Engineering, Environmental Progress & Sustainable Energy, and multiple international conference proceedings, alongside chapters in scientific books on renewable energy and thermodynamic systems. He has also contributed to editorial work at YEKARUM and actively mentors students in energy research projects. Recognized for his scientific contributions, Dr. Elbır has received accolades for innovative approaches in energy efficiency and sustainable system design. His leadership in research, academic service, and community engagement underscores his commitment to advancing renewable energy solutions and mentoring the next generation of engineers. Dr. Elbır’s growing academic impact is reflected in 12 citations, 18 documents, and an h-index of 2, demonstrating his sustained influence in energy systems and renewable energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Akarslan, K. F., Elbır, A., & Şahin, M. E. (2023). Wool drying process in heat-pump-assisted dryer by fuzzy logic modelling. Thermal Science, 27(4 Part B), 3043–3050. Cited by 6

2. Öztürk, M., Elbır, A., & Özek, N. (2011). Akdeniz bölgesine gelen güneş radyasyonunun ekserji analizi. In Proc. 6th International Advanced Technologies Symposium (IATS’11). Cited by 6

3. Öztürk, M., Elbır, A., Özek, N., & Yakut, A. K. (2011). Güneş hidrojen üretim metotlarının incelenmesi. 6th International Advanced Technologies Symposium (IATS’11), 16–18. Cited by 5

4. Elbır, A. (2010). Toprak kaynaklı ısı pompasının termodinamik analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü. Cited by 5

5. Elbır, A., Kodaloğlu, F. A., Üçgül, İ., & Şahin, M. E. (2022). Thermodynamic analysis of refrigerants used in ORC-VCC combined power systems for low temperature heat sources. Thermal Science, 26(4 Part A), 2855–2863. Cited by 4

Valeria Cafaro | Bioenergy | Best Researcher Award

Dr. Valeria Cafaro | Bioenergy | Best Researcher Award

Post – Doc researcher | National Research Council of Italy – Institute of BioEconomy| Italy

Dr. Valeria Cafaro is a dedicated Post-Doctoral Researcher at the National Research Council of Italy – Institute of BioEconomy (CNR–IBE), Catania, Sicily, specializing in crop physiology, sustainable agronomic practices, and genetic improvement of Mediterranean crops under abiotic stress. She holds a Ph.D. in Agricultural, Food, and Environmental Science (Doctor Europaeus, University of Catania), where her research focused on strategies to improve crop resilience and productivity under challenging climate conditions. Professionally, she contributes to the Agritech PNRR project on tomato adaptation to climate change and collaborates on research initiatives including Multicanapa and Ricinolio. Her research interests encompass plant adaptation to drought, salinity, and climate variability, seed biology, sowing optimization, and integrating molecular tools with field experimentation to improve yield, quality, and nutraceutical properties. Dr. Cafaro’s research skills include advanced plant phenotyping, statistical data analysis, experimental design, and development of sustainable crop management protocols. She has authored 11 peer-reviewed articles in Scopus/WoS-indexed journals, with one under review, and presented over 20 contributions at international conferences such as SIA, SOI, EUBCE, and ISHS, earning multiple awards for excellence in plant physiology and agronomy research. She serves as Guest Editor for Horticulturae (Special Issue: “Seed Biology in Horticulture: From Dormancy to Germination”) and peer reviewer for reputed journals including Agronomy, Plants, and International Journal of Molecular Sciences. Professionally, she is a member of the Società Italiana di Agronomia (SIA) and holds formal qualifications as Agronomist and Biologist. Dr. Cafaro’s growing academic impact is reflected in 59 citations, 15 documents, and an h-index of 5, demonstrating her significant and sustained influence in the field of crop physiology and climate-resilient agriculture.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn 

Featured Publications

1. Badagliacca, G., Testa, G., La Malfa, S. G., Cafaro, V., Lo Presti, E., & Monti, M. (2024). Organic fertilizers and bio-waste for sustainable soil management to support crops and control greenhouse gas emissions in Mediterranean agroecosystems: A review. Horticulturae, 10(5), 427. Cited by: 28

2. Arlotta, C., Ciacciulli, A., Strano, M. C., Cafaro, V., Salonia, F., Caruso, P., & Others. (2020). Disease resistant citrus breeding using newly developed high resolution melting and CAPS protocols for Alternaria brown spot marker assisted selection. Agronomy, 10(9), 1368. Cited by: 24

3. Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Germination response of different castor bean genotypes to temperature for early and late sowing adaptation in the Mediterranean regions. Agriculture, 13(8), 1569. Cited by: 12

4. Lippolis, A., Gezan, S. A., Zuidgeest, J., Cafaro, V., van Dinter, B. J., Elzes, G., & Others. (2025). Targeted genotyping (90K-SPET) facilitates genome-wide association studies and the prediction of yield-related traits in faba bean (Vicia faba L.). BMC Plant Biology, 25(1), 558. Cited by: 3

5. Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Assessment of germination response to salinity stress in castor through the hydrotime model. Agronomy, 13(11), 2783. 
Cited by: 6

Renjith Krishnan | Bioenergy | Young Researcher Award

Dr. Renjith Krishnan | Bioenergy | Young Researcher Award   

R&D Engineer | Nasser S. Al Hajri Corporation | United Arab Emirates

Dr. Renjith Krishnan is a distinguished mechanical engineer and educator with nearly a decade of experience in science and engineering, specializing in sustainable energy, waste management, biofuel production, lithium-ion batteries, and Industry 5.0 applications. He earned his Ph.D. in Mechanical Engineering from the National Institute of Technology Mizoram, India (2022), with a thesis on the production, characterization, and testing of bamboo biodiesel in a variable compression ratio engine. He also holds an M.Tech in Computer Integrated Manufacturing from the University of Calicut (2015) and a B.Tech in Mechanical Engineering from the University of Kerala (2013). Dr. Krishnan has served in multiple academic and industry roles, including Assistant Professor positions at Saveetha Engineering College, Madanapalle Institute of Technology & Science, and SHM Engineering College, as well as R&D Piping Engineer at Nasser S. Al Hajri Corporation, UAE. His research interests encompass biofuels, biomass gasification, lithium extraction, machine learning for sustainability, and clean energy systems. He possesses strong research skills in experimental design, process optimization, computational modeling, and data analysis using tools such as Ansys, SolidWorks, Origin, and Python. Dr. Krishnan has an impressive publication record, including Q1 and Q2 journals such as Cleaner Engineering and Technology, Energy Science & Engineering, and Environmental Science and Pollution Research, along with 14 patents in areas ranging from water flow measurement to portable air purifiers. He actively contributes to professional communities as a member of the World Society of Sustainable Energy Technologies and AICTSD and has completed certifications in AI, Python, and Product Management. Dr. Krishnan is committed to mentoring students and fostering innovation in academia and industry. He is the recipient of multiple recognitions for his teaching and research. His growing academic impact is reflected in 80 citations, 9 documents, and an h-index of 4, demonstrating his significant and sustained influence in the field of sustainable energy and mechanical engineering.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

1. Krishnan, R., & Gopan, G. (2024). A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Cleaner Engineering and Technology, 20, 100749. Cited by: 64

2. Krishnan, R., Hauchhum, L., Gupta, R., & Pattanayak, S. (2018). Prediction of equations for higher heating values of biomass using proximate and ultimate analysis. In 2nd International Conference on Power, Energy and Environment: Towards Smart Technology. IEEE.  Cited by: 28

3. Gopan, G., Hauchhum, L., Pattanayak, S., Kalita, P., & Krishnan, R. (2022). Prediction of species concentration in syngas produced through gasification of different bamboo biomasses: A numerical approach. International Journal of Energy and Environmental Engineering, 13(4), 1383–1394. Cited by: 9

4. Krishnan, R., Hauchhum, L., Gupta, R., & Gopan, G. (2022). Production and characterisation of biodiesel extracted from Indian bamboos. International Journal of Oil, Gas and Coal Technology, 31(3), 316–331. Cited by: 6

5. Gopan, G., Hauchhum, L., Kalita, P., Krishnan, R., & Pattanayak, S. (2021). Parametric study of tapered fluidized bed reactor under varied taper angle using TFM. AIP Conference Proceedings, 2396(1), 020020. Cited by: 4

 

Oluwaseun Akinte | Energy Management | Best Researcher Award

Dr. Oluwaseun Akinte | Energy Management | Best Researcher Award

Rajamangala University of Technology Thanyaburi | Thailand

Dr. Oluwaseun Olanrewaju Akinte is an accomplished researcher in renewable energy systems, microgrid-utility grid integration, and advanced energy storage optimization, with a strong focus on developing sustainable and economically viable energy solutions. He holds a Ph.D. in Energy and Materials Engineering from Rajamangala University of Technology Thanyaburi, an MSc in Electrical and Electronic Engineering from Coventry University, United Kingdom, and a BSc from Olabisi Onabanjo University, Nigeria. His professional experience spans research assistantship at RMUTT’s Research and Service Energy Center (RSEC), volunteer lecturing at the University of the People (USA), project engineering roles in Nigeria, and academic tutoring. Dr. Akinte’s research interests include renewable energy system design, techno-econometric modeling of hybrid microgrids, optimization of control strategies, and integration of smart grid topologies. He is proficient in MATLAB, Simulink, HOMER Pro/GRID, ETAP, PSIM, and advanced modeling of power systems, power quality analysis, and biomass-to-energy conversion technologies. His experimental skills extend to hybrid energy storage design, closed-loop control algorithm implementation, and techno-economic feasibility analysis for microgrid deployment. Among his notable honors are the E-CUBE-I RMUTT Scholarship and Best Oral Presentation at ESS 4 for work on energy assessment and power reserve networks. He has delivered invited talks at PMU-B Brainpower Congress, International Conference on Power, Energy and Innovations (ICPEI), and the Eco-Energy Symposium. With numerous peer-reviewed publications in reputed journals such as IEEE Access, Sustainability, Franklin Open, and Energies, his work has significantly contributed to advancing the efficiency and reliability of hybrid energy networks. Dr. Akinte’s leadership, global collaborations, and commitment to mentoring emerging researchers position him as a future leader in the renewable energy sector. His growing academic impact is reflected in 18 citations by 18 documents, 5 documents indexed, and an h-index of 2.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

1. Aina, T. S., Akinte, O. O., & Iyaomolere, B. A. (2022). Investigation on performance of microstrip patch antenna for a practical wireless local area network (WLAN) application. International Journal of Research in Applied Science and Engineering Technology, 10(5), 221–226. (Cited by 4)

2. Aina, T., Akinte, O. O., Iyaomolere, B., Tosin, A. E., Abode, I. I., & Awelewa, A. J. (2022). Implementation of an intelligent motion detector. International Research Journal of Engineering and Technology, 9(1), 1148–1165. (Cited by 3)

3. Aina, T. S., Akinte, O. O., Iyaomolere, B. A., Iriaoghuan, A. I., & Samson, U. A. (2021). Development of a low-cost automatic Internet of Things extension system. Development, 1(1), 1–8. (Cited by 2)

4. Aina, T. S., Akinte, O. O., Awelewa, A. J., & Adelakun, D. O. (2022). Critical evaluation of waterfall project management methodology: A case study of digital management conference project. International Journal of Advanced Multidisciplinary Research and Studies, 2(1), 1–10. (Cited by 8)

5. Akinte, O. O., & Aina, T. S. (2021). HVAC vs HVDC power system: Contemporary development in HVAC and HVDC power transmission system. International Journal of Scientific & Technology Research, 19, 252–261. (Cited by 6)

Hongying Cai | Agri-Energy | Best Researcher Award

Assoc. Prof. Dr. Hongying Cai | Agri-Energy | Best Researcher Award

Associate Professor at Chinese Academy of Agricultural Sciences | China

Dr. Hongying Cai is a dedicated researcher in microbiology with a strong focus on probiotics and microbial applications in health and agriculture. Her work explores the mechanisms by which lactic acid bacteria influence obesity, lipid metabolism, and host health, leading to innovative approaches in microbial ecological preparations. She has successfully combined basic scientific research with practical applications, contributing to both academic knowledge and industrial development. With numerous publications in SCI-indexed journals and multiple authorized national patents, her contributions reflect originality, innovation, and societal impact. As an Associate Professor at the Chinese Academy of Agricultural Sciences, she has demonstrated leadership in significant national-level projects and contributed to technology transfer that benefits the agricultural and health sectors. Dr. Cai’s career reflects a balance of research excellence, innovation, and collaborative engagement, positioning her as an emerging leader in microbiological and biotechnological research.

Professional Profiles

Scopus Profile | ORCID Profile

Education

Dr. Cai pursued her higher education in microbiology at the Graduate School of the Chinese Academy of Agricultural Sciences, where she completed her doctoral studies with a strong focus on probiotics and metabolic regulation. During her academic journey, she acquired rigorous training in molecular biology, microbial genetics, and applied biotechnology, equipping her with both theoretical knowledge and practical expertise. Her academic foundation provided a pathway into advanced research, where she explored the interactions between microorganisms and host metabolic systems. Following her doctoral degree, she continued her academic development through a postdoctoral fellowship at the Institute of Feed Research, where she gained further exposure to interdisciplinary approaches and advanced methodologies. This educational journey strengthened her ability to address complex biological problems while cultivating a broad perspective on microbiological applications in agriculture and health sciences. Her academic background has been instrumental in shaping her current role as a leading researcher in her field.

Experience

Dr. Cai has accumulated rich professional experience in microbiology and feed research through her work at the Institute of Feed Research, Chinese Academy of Agricultural Sciences. She has undertaken extensive postdoctoral research and now serves as an Associate Professor, where she leads projects at the intersection of microbiology, biotechnology, and animal health. Her experience includes designing and executing high-impact national research projects under competitive funding programs and developing innovative microbial ecological preparations. She has successfully managed multi-disciplinary teams, coordinated with industrial partners, and facilitated technology transfer, demonstrating her ability to bridge scientific discovery with real-world application. Her leadership extends to supervising junior researchers and contributing to collaborative studies, enhancing the reach and relevance of her work. The blend of academic research and industry-linked projects has given her comprehensive expertise in both scientific innovation and practical outcomes, positioning her as an experienced researcher with strong professional impact.

Research Interest

Dr. Cai’s primary research interests center on the role of probiotics, particularly lactic acid bacteria, in regulating host metabolism and improving health outcomes. She is deeply engaged in uncovering the mechanisms through which these microorganisms influence lipid metabolism, obesity control, and glucose regulation. Her work further extends into the development of microbial ecological preparations that can be applied in both animal husbandry and human health, with a vision of improving sustainability and wellness. She has established advanced in vitro screening systems to identify promising microbial strains, offering new tools for probiotic research and development. Dr. Cai also explores the broader potential functions of beneficial microbes, seeking to integrate microbiology with biotechnology for innovative solutions. Her research contributes not only to scientific discovery but also to practical applications in agriculture, food sciences, and health care, highlighting the interdisciplinary significance of her work in addressing global challenges.

Awards and Honors

Dr. Cai has received recognition for her outstanding contributions to microbiological research, particularly in the areas of probiotics and microbial biotechnology. Her work has been supported through competitive funding programs, including prestigious national research grants, which reflect the value and impact of her scientific ideas. She has successfully completed multiple government-supported projects and contributed to advancing national research priorities. In addition to these achievements, she has secured several authorized national invention patents, which demonstrate the innovative nature of her research and its potential for practical application. Her publications in respected international journals, where she has often served as first or corresponding author, further highlight her scholarly excellence. These accomplishments collectively illustrate her ability to deliver impactful research outcomes, gain professional recognition, and contribute to both academic advancement and applied innovation. Her record of honors and achievements reflects her commitment to advancing knowledge and benefiting society.

Research Skills

Dr. Cai has developed strong research skills that combine advanced laboratory expertise, analytical ability, and leadership in scientific inquiry. She is proficient in microbiological techniques, molecular biology methods, and microbial genetic analysis, which allow her to explore the complex mechanisms of probiotic functions. Her skills extend to establishing innovative screening systems for lactic acid bacteria, enabling effective evaluation of microbial strains with potential health benefits. She is experienced in project management, having led several major research initiatives that required coordination, problem-solving, and interdisciplinary collaboration. Additionally, Dr. Cai demonstrates skill in translating laboratory discoveries into practical applications, supported by her record of patents and technology transfers. She is also adept at scientific communication, as reflected in her publications in internationally recognized journals. Her ability to integrate experimental precision, strategic project leadership, and innovation underscores her strong profile as a skilled and versatile researcher in microbiology and biotechnology.

Publication Top Notes

Title: Heat-Inactivated Lactiplantibacillus plantarum FRT4 Alleviates Diet-Induced Obesity via Gut–Liver Axis Reprogramming
Authors: Yuyin Huang; Qingya Wang; Xiling Han; Kun Meng; Guohua Liu; Haiou Zhang; Rui Zhang; Hongying Cai; Peilong Yang
Year: 2025
Journal: Foods (Multidisciplinary Digital Publishing Institute – MDPI)

Conclusion

Dr. Hongying Cai is a highly deserving candidate for the Best Researcher Award. With a strong foundation in microbiology, she has advanced the understanding of lactic acid bacteria and their role in regulating metabolism, contributing both to science and its practical applications in health and agriculture. Her significant research projects, impactful publications, patents, and dedication to technology transfer highlight her commitment to both innovation and societal benefit. With her strong research background and potential for future leadership in international collaborations, Dr. Cai stands out as a promising researcher who will continue to make substantial contributions to science and society.