Tao Sun | Renewable Energy Systems | Best Researcher Award

Prof. Tao Sun | Renewable Energy Systems | Best Researcher Award

Professor | Northwest University | China

Dr. Tao Sun is a distinguished Professor at the School of Chemical Engineering, Northwest University, China, widely recognized for his pioneering contributions to the fields of energy conversion and environmental catalysis. His research focuses on the rational design and synthesis of nanostructured and single-atom materials for electrocatalysis, photocatalysis, water splitting, fuel cells, metal–air batteries, and CO₂ reduction. By integrating advanced concepts in atomic-level engineering, heterojunction construction, and defect chemistry, he has developed highly efficient and durable materials that address pressing global challenges in clean energy generation and pollutant degradation. Dr. Sun has authored more than ninety peer-reviewed publications, including numerous papers as first or corresponding author in internationally renowned journals such as Nature Nanotechnology, Advanced Materials, Advanced Functional Materials, ACS Nano, ACS Catalysis, and Advanced Science. His research has achieved substantial global recognition, reflected by thousands of citations and a strong h-index, underscoring his scientific influence and leadership in catalysis and materials chemistry. In addition to his prolific research output, Dr. Sun serves as a reviewer for over fifty leading international journals and contributes to the scholarly community as a youth editor for EcoEnergy, Advanced Powder Materials, and Carbon Energy. His work bridges fundamental science and applied technology, offering innovative strategies for sustainable energy conversion, carbon-neutral pathways, and environmental protection. Through his commitment to advancing catalyst design and clean energy technologies, Dr. Tao Sun continues to make impactful contributions that shape the future of green chemistry and sustainable materials engineering. Dr. Tao Sun’s academic excellence is reflected in his global research influence, with 6,780 citations, 94 publications, and an h-index of 38, highlighting his leading role in the field of materials and energy science.

Profiles: Scopus | ORCID

Featured Publications

1. Sun, T., et al. (2025). Photocatalytic H₂ evolution over Ni₃(PO₄)₂/twinned-Cd₀.₅Zn₀.₅S S-scheme homo-heterojunction using degradable plastics as electron donors. Journal of Materials Science and Technology. Citations: 8

2. Sun, T., et al. (2025). Efficient hydrogen production coupled with polylactic acid plastic electro-treatment over a CoFe LDH/MoSe₂/NixSey/NF heterostructure electrocatalyst. ACS Sustainable Chemistry & Engineering. Citations: 4

3. Sun, T., et al. (2025). Co₃S₄/MnS p–p heterojunction as a highly efficient electrocatalyst for water splitting and electrochemical oxidation of organic molecules. Journal of Colloid and Interface Science. Citations: 10

4. Sun, T., et al. (2025). Efficient photocatalytic H₂ evolution over SnS₂/twinned Mn₀.₅Cd₀.₅S hetero-homojunction with double S-scheme charge transfer routes. Journal of Materials Science and Technology. Citations: 31

5. Sun, T., et al. (2025). Tuning interfacial charge transfer for efficient photodegradation of tetracycline hydrochloride over Ti₃C₂/Bi₁₂O₁₇Cl₂ Schottky heterojunction and theoretical calculations. Applied Surface Science. Citations: 16

Dr. Tao Sun’s pioneering research in photocatalysis and electrocatalysis advances sustainable hydrogen production and plastic waste valorization, bridging clean energy generation with environmental remediation. His innovative heterostructure designs drive global progress toward carbon-neutral technologies and circular energy systems, fostering transformative impact across science, industry, and society.

Leyla Akbulut | Sustainable Energy Policies | Best Innovation Award

Ms. Leyla Akbulut | Sustainable Energy Policies | Best Innovation Award

Lecturer at Alanya Alaaddin Keykubat University, Turkey

Leyla Akbulut is a dedicated academic and researcher in the field of Electrical and Electronics Engineering, with a strong professional focus on renewable energy systems, energy efficiency, and distribution network optimization. She has combined academic teaching, applied research, and project leadership to contribute significantly to sustainable energy transitions. Her career demonstrates a unique blend of theoretical expertise and practical implementation, particularly in solar energy integration, energy performance contracting, and smart grid applications. Beyond her technical contributions, she has actively participated in cross-disciplinary projects that connect academia, industry, and government institutions, making her work relevant to both scientific advancement and societal needs. Known for her innovation-driven research, she has also earned recognition from prestigious organizations at both national and European levels. Her leadership in energy management initiatives, coupled with an active role in advancing education, positions her as an influential voice in the global move toward sustainable energy solutions.

Professional Profile 

Google Scholar | Scopus Profile | ORCID Profile 

Education

Her academic journey began with a solid foundation in Electrical and Electronics Engineering, which she pursued through undergraduate and graduate studies. She completed her bachelor’s studies with a focus on power systems and energy distribution, later strengthening her expertise with a master’s degree centered on electrical distribution optimization. Her doctoral research advanced these foundations by focusing on cutting-edge approaches for optimizing power distribution networks through innovative algorithms and efficiency-oriented frameworks. This academic progression reflects her continuous pursuit of excellence, bridging core engineering concepts with applied problem-solving in renewable energy systems. Her academic path has equipped her with in-depth technical knowledge, advanced mathematical modeling skills, and strong problem-solving abilities, essential for addressing modern challenges in sustainable energy. Her education has not only shaped her expertise but has also provided her with the necessary analytical and leadership skills to engage in interdisciplinary projects that integrate engineering, sustainability, and innovation.

Experience

Leyla Akbulut’s professional experience spans academia, industry, and research, showcasing a dynamic career that connects technical expertise with practical application. In academia, she serves as a lecturer, teaching courses in high voltage engineering, power system analysis, renewable energy, and distribution systems. Beyond teaching, she has taken on administrative and leadership roles, such as energy management coordination, ensuring institutional compliance with sustainability and efficiency goals. Her industrial experience includes roles in electrical distribution companies, where she contributed to R&D projects, grid modernization, and urban development projects as a site manager and systems engineer. She has also been actively involved in national-scale projects for the installation of solar energy plants, energy performance contracting, and grid optimization, serving both as project leader and collaborator. This diverse career trajectory has enabled her to combine academic rigor with hands-on technical expertise, making her contributions impactful across education, industry, and applied innovation in energy systems.

Research Interest

Her research interests lie at the intersection of renewable energy, energy efficiency, and advanced optimization of power systems. She focuses on the design, modeling, and analysis of sustainable energy systems, with special attention to photovoltaic projects, smart grids, and energy performance contracting. She is particularly interested in exploring how solar and biomass systems can be integrated into circular energy solutions for campuses and communities, advancing eco-friendly and cost-effective models. Additionally, her work investigates the application of metaheuristic algorithms for demand-side management, energy cost optimization, and efficiency improvements in electrical distribution networks. She is also keen on exploring interdisciplinary dimensions of energy research, such as economic feasibility, regulatory frameworks, and digitalization of power systems. Her research philosophy emphasizes innovation that combines environmental sustainability with practical applicability, aiming to create solutions that not only address technical challenges but also contribute to global energy transition and climate change mitigation efforts.

Awards and Honors

Throughout her career, Leyla Akbulut has received multiple prestigious recognitions that highlight both her academic excellence and her innovative contributions to energy research. She has been honored by national institutions for her efficiency-enhancing projects, reflecting her role in advancing applied research that directly impacts society. Internationally, her work has gained visibility through recognition by the European Commission, showcasing her ability to bring forward innovative and entrepreneurial approaches to renewable energy solutions. These awards emphasize her leadership in pioneering projects that improve sustainability and energy efficiency at institutional and community levels. In addition to formal awards, she has also been invited to present her work at scientific meetings and conferences, further confirming her position as a respected contributor in her field. Such distinctions not only validate her research but also demonstrate her influence in bridging academic innovation with real-world energy challenges and sustainable development goals.

Research Skills

Her research skills span a wide spectrum of analytical, technical, and interdisciplinary capabilities. She is proficient in advanced algorithmic modeling, including the use of genetic algorithms and mixed-integer linear programming for optimization of distribution systems. She has extensive experience in renewable energy integration, particularly in solar power plant installations and energy performance contracting frameworks. Her skills also extend to economic analysis of renewable energy projects, where she employs regression models and efficiency evaluations to assess feasibility and scalability. Beyond technical expertise, she has demonstrated strong leadership in managing collaborative research projects, coordinating teams of academics and practitioners from different sectors. She is equally skilled in preparing scientific publications for high-impact international journals, with experience in collaborative writing and interdisciplinary research dissemination. Her combined expertise in theory, application, and project management makes her a versatile researcher capable of producing innovative, sustainable, and impactful solutions in the energy domain.

Publication Top Notes

Title: Economic Efficiency of Renewable Energy Investments in Photovoltaic Projects: A Regression Analysis
Authors: A. Akbulut, M. Niemiec, K. Taşdelen, L. Akbulut, M. Komorowska, A. Atılgan, …
Journal: Energies
Year: 2025
Citation: 1

Title: Review of Metaheuristic Algorithms for Energy Efficiency, Demand Side Management and Cost Estimation
Authors: L. Akbulut, K. Taşdelen, A. Çoşgun
Journal: Rocznik Ochrona Środowiska
Year: 2025
Citation: 1

Title: Analysis of Electrical Distribution Network Voltage Configuration with Mixed Integer Linear Programming Algorithm and Genetic Algorithm in Terms of Energy Cost
Authors: L. Akbulut, S.S. Tezcan, A. Coşgun
Journal: Electrica
Year: 2020
Citation: 1

Title: Dağıtım Şebekesi Gerilim Konfigürasyonunun Karışık Tamsayı Lineer Programlama Algoritması ile Enerji Maliyeti Yönünden Araştırılması
Authors: L. Akbulut, S.S. Tezcan, A. Coşgun
Journal: Mühendislik Bilimleri ve Tasarım Dergisi
Year: 2019
Citation: 1

Title: Solar-Powered Biomass Revalorization for Pet Food and Compost: A Campus-Scale Eco-Circular System Based on Energy Performance Contracting
Authors: L. Akbulut, A. Coşgun, M.H. Aldulaimi, S.O.W. Khafaji, A. Atılgan, M. Kılıç
Year: 2025

Conclusion

In summary, Leyla Akbulut is a highly deserving candidate for the Best Innovation Award. Her pioneering research in renewable energy optimization, sustainable electricity distribution, and innovative campus-scale eco-energy systems demonstrates both technical excellence and societal impact. Her leadership in national projects, coupled with international publications and recognition by European and national institutions, underscores her innovation-driven contributions. With her strong academic background, professional expertise, and demonstrated capacity for impactful applied research, she stands out as a researcher who can continue driving cutting-edge solutions for sustainable energy futures, making her a worthy recipient of this award.