Sergei Petrenko | Solar Energy | Best Researcher Award

Prof. Dr. Sergei Petrenko | Solar Energy | Best Researcher Award

Sirius University of Science and Technology | Russia

Prof. Sergei Petrenko, born in 1968 in Kaliningrad (the Baltic), is a distinguished Doctor of Technical Sciences and Professor at Sirius University, Russia, recognized for his extensive contributions to information security and digital technologies. He graduated with honors in 1991 from Leningrad State University with a degree in mathematics and engineering, laying a solid foundation for his academic and professional journey. Over the years, Prof. Petrenko has designed and implemented critical information systems for numerous national and corporate projects, including three national Situational-Crisis Centers (RCCs), three operators of special information services (MSSP and MDR), two virtual trusted communication operators (MVNO), more than ten segments of the System for Detection, Prevention, and Elimination of the Effects of Computer Attacks (SOPCA) and the System for Detection and Prevention of Computer Attacks (SPOCA), as well as five monitoring centers for information security threats and response, including CERT, CSIRT, and two industrial CERTs for IIoT/IoT environments. His research interests encompass information security, big data technologies, cloud security, corporate and industrial Internet protection, and innovative digital economy solutions. Prof. Petrenko possesses advanced research skills in auditing corporate cybersecurity, risk management, security policy formulation, and developing methods and technologies to safeguard critical national infrastructure. He has authored and co-authored 14 monographs and practical manuals published by Springer Nature Switzerland AG, River Publishers, Peter, Athena, and DMK-Press, including works such as “Big Data Technologies for Monitoring,” “Innovation for the Digital Economy,” and “Methods and Technologies of Cloud Security,” alongside over 350 articles in leading journals and conference proceedings. His exceptional contributions to national projects have earned him the prestigious “Big ZUBR” and “Golden ZUBR” awards. Prof. Petrenko continues to lead the State Scientific School, advancing both applied and theoretical research in information security, fostering innovation, and mentoring the next generation of cybersecurity experts, with a documented record of 296 citations, 55 documents, and an h-index of 10.

Profiles: Google Scholar | Scopus| ORCID

Featured Publications

1. Balyabin, A. A., & Petrenko, S. A. (2025). Model of a blockchain platform with cyber-immunity under quantum attacks. Voprosy kiberbezopasnosti, (3), 72-82.

2. Balyabin, A., & Petrenko, S. (2025). Methodology for synthesizing quantum-resistant blockchain platforms with cyber-immunity. Voprosy kiberbezopasnosti, (4), 46-54.

3. Buchatskiy, P., Onishchenko, S., Petrenko, S., & Teploukhov, S. (2025). Methodology for assessing the technical potential of solar energy based on artificial intelligence technologies and simulation-modeling tools. Energies.

4. Olifirov, A. V., Makoveichuk, K., & Petrenko, S. (2025). Research of aspects of omnicanal approach in the industry of digital learning technologies of organizations. In [Book Title], Springer Nature Switzerland AG (Chapter).

5. Petrenko, S. A., & Alexei Petrenko. (2023). Basic Algorithms Quantum Cryptanalysis. Voprosy kiberbezopasnosti, (1), 100-115.

 

 

Guanglong Ge | Energy Storage | Best Researcher Award

Dr. Guanglong Ge | Energy Storage | Best Researcher Award

Postdoctoral | Tongji University | China

Dr. Guanglong Ge is a distinguished materials scientist specializing in antiferroelectric, ferroelectric, relaxor ferroelectric, and dielectric materials, with a strong focus on energy storage performance, electrocaloric effects, piezoelectric properties, and structure–property relationships. He earned his Ph.D. in Materials Science from Tongji University, China (2017–2022), following his B.Sc. in Inorganic Materials from Chang’an University (2013–2017). Currently serving as a Postdoctoral Researcher at Tongji University, Dr. Ge leads cutting-edge investigations on the energy storage performance of antiferroelectric ceramics, supported by prestigious funding such as the Sino-German (CSC-DAAD) Postdoc Scholarship, China Postdoctoral Science Foundation, and the Shanghai Postdoctoral Excellence Program. His research contributions have significantly advanced the understanding of multilayer ceramic capacitors and field-induced structural evolution in dielectric materials. Dr. Ge’s professional experience includes participation in national and international R&D programs and collaborative projects aimed at developing high-performance energy storage materials with broad technological relevance. His key research skills encompass materials synthesis, dielectric characterization, in-situ structural analysis, and multiphysics coupling simulation, enabling him to uncover critical insights into phase transitions and energy optimization mechanisms. Recognized for his innovative contributions, Dr. Ge has published over 66 peer-reviewed papers in top journals, including Advanced Materials, Nature Communications, Science Advances, and Energy Storage Materials, and has delivered presentations at major international conferences such as the Ferroelectric International Seminar and the China–Japan Symposium on Ferroelectric Materials. His dedication has earned him multiple awards, including competitive postdoctoral fellowships and recognition for scientific excellence in dielectric research. Dr. Ge’s future research aims to pioneer next-generation sustainable energy storage technologies through interdisciplinary collaboration and advanced material design. Dr. Guanglong Ge’s academic impact is further reflected in his growing recognition with 2,662 citations, 66 documents, and an h-index of 27, demonstrating his influential role in advancing antiferroelectric ceramics and energy storage materials research.

Profiles: Scopus | ORCID

Featured Publications

1. Ge, G., Zeng, H., Qian, J., Shen, B., Cheng, Z., Zhai, J., Liu, Y., Wang, D., & He, L. (2025). Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering. Nature Communications. Citations: 7

2. Ge, G., Chen, C., Qian, J., Lin, J., Shi, C., Li, G., Wang, S., & Zhai, J. (2025). Local heterogeneous dipolar structures drive gigantic capacitive energy storage in antiferroelectric ceramics. Nature Communications. Citations: 2

3. Ge, G., Yang, J., Shi, C., Lin, J., Hao, Y., & Wei, Y. (2025). Nano-domain configuration boosting energy storage capacity of NaNbO3-based relaxor ferroelectrics. Journal of Power Sources. Citations: 1

4. Ge, G., Hao, Y., Lin, J., Shi, C., & Yao, W. (2025). Outstanding comprehensive piezoelectric properties in KNN-based ceramics via co-optimization of crystal structure and grain orientation. Acta Materialia.

5. Ge, G., Qian, J., Chen, C., Shi, C., Lin, J., Li, G., & Zhai, J. (2025). Excellent energy storage performance of polymorphic modulated antiferroelectric lead zirconate ceramic. Advanced Materials. Citations: 1

 

Christian Idogho | Solar Energy | Best Researcher Award

Mr. Christian Idogho | Solar Energy | Best Researcher Award

Researcher | University of Vermont | United States

Mr. Christian Idogho is a Ph.D. Candidate in Materials Science at the University of Vermont, where he focuses on semiconductor thin-film growth, materials characterization, and renewable energy systems. He earned a Bachelor of Engineering in Mechanical Engineering from the University of Agriculture, Makurdi (2020) and a Diploma in Chemical Engineering from Auchi Polytechnic. His professional and research experience spans multiple institutions and international collaborations, including advanced thin-film deposition projects using CVD, sputtering, and pulsed-laser deposition, as well as in-situ X-ray scattering studies at Brookhaven National Laboratory. He has also contributed to renewable energy forecasting research using machine learning at the University of Nigeria, Nsukka, and held teaching assistantships at both the University of Vermont and Auchi Polytechnic, mentoring students in physics and core engineering subjects. His research interests include semiconductor thin-film growth, thermoelectric materials, machine learning for clean energy forecasting, renewable energy systems, and advanced materials characterization techniques such as XRD, SEM, AFM, and ellipsometry. Mr. Idogho’s research skills cover a wide spectrum, including COMSOL Multiphysics, MATLAB, Python, CAD tools (SolidWorks, Autodesk Inventor), and simulation of photovoltaic and thermoelectric systems. His awards and honors include the Best Researcher Award in Machine Learning (2025), Best Undergraduate Thesis Award (2020), and the Olive Real Estate Science and Engineering Scholarship. He is also an active reviewer for journals such as Energy Research and Clean Energy and maintains memberships in Sigma Xi, the Association for Iron & Steel Technology (AIST), Material Advantage, NSBE, and Black in AI. Mr. Idogho’s contributions through publications in Energy Science & Engineering, Energies, and Unconventional Resources underscore his growing reputation in clean energy and advanced materials. With his vision, technical expertise, and commitment to international collaboration, he is positioned to become a global leader in sustainable energy materials and semiconductor research. Mr. Idogho’s growing academic impact is reflected in 21 citations, 4 documents, and an h-index of 1, demonstrating his emerging influence in materials science and renewable energy research.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

1. Maduabuchi, C., Nsude, C., Eneh, C., Eke, E., Okoli, K., Okpara, E., & Idogho, C. (2023). Renewable energy potential estimation using climatic-weather-forecasting machine learning algorithms. Energies, 16(4), 1603. Cited by: 25

2. Onuh, P., Ejiga, J. O., Abah, E. O., Onuh, J. O., Idogho, C., & Omale, J. (2024). Challenges and opportunities in Nigeria’s renewable energy policy and legislation. World Journal of Advanced Research and Reviews, 23(2), 2354–2372.  Cited by: 15

3. Idoko, P. I., Ezeamii, G. C., Idogho, C., Peter, E., Obot, U. S., & Iguoba, V. A. (2024). Mathematical modeling and simulations using software like MATLAB, COMSOL and Python. Magna Scientia Advanced Research and Reviews, 12(2), 62–95. Cited by: 6

4. Maduabuchi, C., Nsude, C., Eneh, C., Eke, E., Okoli, K., Okpara, E., & Idogho, C. (2023). Renewable energy potential estimation using climatic-weather-forecasting machine learning algorithms. Energies, 16(4), 1603.  Cited by: 3

5. Idogho, C., Abah, E. O., Onuh, J. O., Harsito, C., Omenka, K., Samuel, A., Ejila, A., & Idoko, I. P. (2025). Machine learning-based solar photovoltaic power forecasting for Nigerian regions. Energy Science & Engineering, 13(4), 1922–1934. Cited by: 1

Ahmet Elbir | Renewable Energy | Best Researcher Award

Dr. Ahmet Elbir | Renewable Energy | Best Researcher Award

Süleyman Demirel University | Turkey

Dr. Ahmet Elbır, Ph.D. in Energy Systems from Süleyman Demirel University (2021), is a distinguished academic and researcher specializing in thermodynamic systems, renewable energy, and sustainable energy optimization. His educational background includes multiple degrees in Mechanical Engineering and Energy Systems Engineering, culminating in advanced research on transcritical CO₂ heat pumps and ground-source heat pump thermodynamics. Professionally, he serves as a Lecturer at Süleyman Demirel University’s Renewable Energy Research Center (YEKARUM), contributing to national and international research projects, including biogas reactor design and hybrid energy storage systems. His research interests encompass energy and exergy analysis, thermodynamic cycle optimization (Kalina, ORC, Brayton, and Rankine cycles), AI-assisted energy modeling, phase-change materials for energy storage, and sustainable cooling and heating technologies. Dr. Elbır possesses strong research skills in experimental and theoretical thermodynamic analysis, Python and AI-based simulation, fuzzy logic modeling, energy system optimization, and environmental impact assessment of industrial processes. His extensive publication record includes articles in top-tier journals such as Applied Thermal Engineering, Journal of Building Engineering, Environmental Progress & Sustainable Energy, and multiple international conference proceedings, alongside chapters in scientific books on renewable energy and thermodynamic systems. He has also contributed to editorial work at YEKARUM and actively mentors students in energy research projects. Recognized for his scientific contributions, Dr. Elbır has received accolades for innovative approaches in energy efficiency and sustainable system design. His leadership in research, academic service, and community engagement underscores his commitment to advancing renewable energy solutions and mentoring the next generation of engineers. Dr. Elbır’s growing academic impact is reflected in 12 citations, 18 documents, and an h-index of 2, demonstrating his sustained influence in energy systems and renewable energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Akarslan, K. F., Elbır, A., & Şahin, M. E. (2023). Wool drying process in heat-pump-assisted dryer by fuzzy logic modelling. Thermal Science, 27(4 Part B), 3043–3050. Cited by 6

2. Öztürk, M., Elbır, A., & Özek, N. (2011). Akdeniz bölgesine gelen güneş radyasyonunun ekserji analizi. In Proc. 6th International Advanced Technologies Symposium (IATS’11). Cited by 6

3. Öztürk, M., Elbır, A., Özek, N., & Yakut, A. K. (2011). Güneş hidrojen üretim metotlarının incelenmesi. 6th International Advanced Technologies Symposium (IATS’11), 16–18. Cited by 5

4. Elbır, A. (2010). Toprak kaynaklı ısı pompasının termodinamik analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü. Cited by 5

5. Elbır, A., Kodaloğlu, F. A., Üçgül, İ., & Şahin, M. E. (2022). Thermodynamic analysis of refrigerants used in ORC-VCC combined power systems for low temperature heat sources. Thermal Science, 26(4 Part A), 2855–2863. Cited by 4

Mehdi Safaei | Sustainable Energy | Renewable Energy Education Award

Assist. Prof. Dr. Mehdi Safaei | Sustainable Energy | Renewable Energy Education Award

Assistant Professor | Istanbul Gelişim University | Turkey

Dr. Mehdi Safaei is an accomplished scholar with over 12 years of teaching and research experience in Industrial Engineering, specializing in supply chain management, logistics optimization, and sustainable supply networks. He earned his Ph.D. in Industrial Engineering (Logistics and Supply Network) from the University of Bremen, Germany in 2014, graduating with magna cum laude distinction and a perfect GPA, supported by the prestigious IGS scholarship. He also holds an M.Sc. and B.Sc. in Industrial Engineering from Sharif University of Technology, Iran, where he ranked first in the highly competitive national entrance examination. Professionally, Dr. Safaei has served as Assistant Professor at Istanbul Gelisim University since 2019, leading TÜBİTAK-funded projects, publishing extensively, and supervising more than 400 undergraduate and 30 graduate theses. His previous roles include Assistant Professor at Razi Vaccine and Serum Research Institute, Lecturer at the University of Tehran and Al-Zahra University, and Research Assistant at BIBA-LogDynamic, Germany, where he received three Best Paper Awards. His research interests include dynamic supply network design, green supply chain management, machine learning in logistics, crisis management, and Industry 4.0 integration. He is skilled in supply chain modeling, project management, risk analysis, and quantitative research, with advanced expertise in simulation, ERP systems, and statistical analysis. A dedicated mentor and collaborator, he has translated key logistics texts, authored two books, and published 40+ journal and conference papers in reputed outlets such as IEEE, Elsevier, and Scopus-indexed journals. His professional affiliations include INFORMS, CSCMP, EurOMA, IISE, and IAENG, reflecting his active engagement with the global research community. Dr. Safaei’s outstanding achievements have earned him honors such as “Magna Cum Laude” recognition, national top rankings, and multiple international awards. Dr. Safaei’s growing academic impact is reflected in 132 citations, 17 documents, and an h-index of 7, demonstrating his significant and sustained influence in the field of industrial engineering and sustainable supply chain management.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Alsharif, A. H., Salleh, N. Z. M., Baharun, R. B., & Safaei, M. (2020). Neuromarketing approach: An overview and future research directions. Journal of Theoretical and Applied Information Technology, 98(7), 915–925. Cited by 65

2. Safari, Y., Abdollahi, S. A., Mahmoudi, M., Safaei, M., Taghinia, F., & Pasha, P. (2023). Numerical study of heat transfer of wavy channel supercritical CO2 PCHE with various channel geometries. International Journal of Thermofluids, 18, 100330. Cited by 32

3. Mosier, W., Elhadary, T., Elhaty, I. A. M., & Safaei, M. (2020). Crisis management and the impact of pandemics on religious tourism. Dublin Institute of Technology Conference Proceedings. Cited by 30

4. Safaei, M. (2014). An integrated multi-objective model for allocating the limited sources in a multiple multi-stage lean supply chain. Economic Modelling, 37, 224–237. Cited by 26

5. Safaei, M., & Thoben, K. D. (2014). Measuring and evaluating of the network type impact on time uncertainty in the supply networks with three nodes. Measurement, 56, 121–127. Cited by 20

Carolina Santamarta | Carbon Neutral Technologies | Women Researcher Award

Ms. Carolina Santamarta | Carbon Neutral Technologies | Women Researcher Award

PHD student at Universidad Politécnica de Madrid | Spain

Carolina Santamarta is an accomplished industrial engineer with a diverse career spanning engineering, management, and renewable energy research. She has successfully transitioned from leading businesses in tourism, health, and education to re-engaging in advanced research within the industrial and renewable energy sectors. Her work reflects a balance between academic rigor and practical application, as she integrates her background in industrial operations with a focus on sustainable energy solutions. As a researcher, she is deeply committed to the study of renewable fuels and innovative approaches to energy generation, seeking to contribute toward global clean energy transitions. In addition to her academic pursuits, she has demonstrated strong leadership through business ownership, project management, and STEM education initiatives for children, reflecting her broader vision of contributing both to scientific progress and social development. Her adaptability, entrepreneurial mindset, and research focus make her a dynamic figure in the renewable energy field.

Professional Profile 

ORCID Profile 

Education

Carolina’s academic journey demonstrates her dedication to engineering and sustainable development. She earned her degree in Industrial Engineering at Universidad Carlos III Madrid, where she gained expertise in materials science, mechanical systems, and industrial processes. Building upon this strong foundation, she later pursued a Master’s in Renewable Energies, which allowed her to expand her knowledge into sustainable technologies such as solar, wind, and biomass energy systems. Currently, she is engaged in doctoral research in renewable fuels, an area of growing global importance. Her Ph.D. work integrates applied engineering with environmental sustainability, with the goal of advancing innovative and practical energy solutions. Throughout her education, Carolina has complemented her formal studies with hands-on use of advanced tools like Pvsyst and CHEQ4, enabling accurate modeling and evaluation of renewable energy projects. Her academic progression highlights both intellectual rigor and a clear focus on addressing real-world sustainability challenges through advanced research.

Experience

Carolina brings a wealth of professional experience that spans industrial manufacturing, entrepreneurship, and educational innovation. Early in her career, she contributed to leading industrial companies, managing machinery maintenance, manufacturing processes, and continuous improvement teams in fiberglass factories. These roles equipped her with strong technical expertise and an understanding of quality control in large-scale operations. Later, she moved into business leadership, where she managed and co-owned organizations in healthcare and tourism, overseeing budgets, human resources, and organizational strategy. Her role at Tesla Cool Lab further demonstrated her ability to connect technology with education by developing scientific and technological programs for children, fostering early interest in STEM fields. This breadth of experience reflects her ability to integrate managerial and technical expertise, balancing industrial problem-solving with entrepreneurial innovation. Her career trajectory illustrates her adaptability and her commitment to applying engineering knowledge across different industries while aligning with her growing research ambitions.

Research Interest

Carolina’s research interests lie primarily in renewable energy, with a focus on renewable fuels and their role in enabling sustainable energy transitions. She is particularly interested in developing and optimizing energy systems that integrate solar, wind, and biomass resources, with an emphasis on clean fuel technologies that can serve as viable alternatives to fossil fuels. Her work is aimed at bridging the gap between industrial-scale applications and academic innovation, seeking solutions that are not only technically efficient but also economically and environmentally viable. In addition, she is passionate about exploring tools and modeling techniques that allow accurate forecasting and evaluation of renewable energy projects, ensuring reliability and scalability. Carolina’s research vision also includes contributing to the development of community-based and decentralized energy solutions, promoting accessibility and resilience in energy systems. By aligning her technical expertise with sustainability goals, she strives to support global efforts toward climate change mitigation.

Awards and Honors

Carolina has earned recognition for her leadership and innovative contributions across different fields, blending her engineering background with business success and social engagement. Her achievements include directing successful companies in healthcare and tourism, where she demonstrated strong entrepreneurial leadership and effective resource management. Her initiative in founding Tesla Cool Lab has been widely appreciated for advancing STEM education among young learners, nurturing the next generation of scientists and engineers. In the industrial sector, she has been acknowledged for her ability to lead continuous improvement processes, enhance production efficiency, and uphold high standards of quality control. These accomplishments underscore her capability to excel in diverse professional environments while maintaining a commitment to innovation and social responsibility. Her transition into advanced renewable energy research further highlights her perseverance and dedication to professional growth, reflecting an inspiring career path that combines scientific advancement with meaningful societal impact.

Research Skills

Carolina possesses a robust set of research skills that integrate her industrial background with advanced knowledge in renewable energy technologies. She is proficient in using specialized tools such as Pvsyst and CHEQ4 for solar and wind resource evaluation, alongside online platforms for assessing hydrological and renewable potential. These technical abilities enable her to conduct comprehensive analyses and design energy systems with precision. In addition to her technical expertise, she brings strong project management skills, having managed complex budgets, human resources, and continuous improvement initiatives in industrial and business contexts. Her multilingual abilities allow her to effectively collaborate on international research projects, while her leadership experience equips her to guide teams toward achieving research objectives. Carolina’s skills also extend to bridging academic research with applied practice, ensuring her work has real-world impact. This combination of analytical rigor, technical expertise, and leadership makes her well-suited for interdisciplinary renewable energy research.

Publication Top Notes

Title: Decentralized Model for Sustainable Aviation Fuel (SAF) Production from Residual Biomass Gasification in Spain
Authors: Carolina Santamarta Ballesteros; David Bolonio; María-Pilar Martínez-Hernando; David León; Enrique García-Franco; María-Jesús García-Martínez
Year: 2025
Journal: Resources (Published by Multidisciplinary Digital Publishing Institute)

Conclusion

Carolina Santamarta is a deserving candidate for the Women Researcher Award due to her unique blend of industrial engineering expertise, renewable energy research, and leadership across multiple sectors. Her commitment to advancing sustainable energy solutions, combined with her entrepreneurial drive and community-building efforts, reflects both academic promise and societal impact. With her ongoing Ph.D. research in renewable fuels and her proven capacity for leadership and innovation, she is well-positioned to make significant contributions to the renewable energy sector and inspire future generations of women in science and engineering.