Yanfei Li | Green Hydrogen | Best Researcher Award

Assoc. Prof. Dr. Yanfei Li | Green Hydrogen | Best Researcher Award

Associate Professor | Shenzhen Technology University | China

Dr. Yanfei Li is a prominent scholar in energy economics, industrial policy, and technological innovation, with research spanning the full spectrum of Asia’s low-carbon transition. His work covers hydrogen energy systems, new energy vehicle deployment, green fuel trade, regional gas markets, and cross-border electricity market design, while also addressing broader themes such as technological catch-up, industrial upgrading, and innovation policy in emerging economies. Dr. Li has played significant roles in various interdisciplinary and policy-driven research initiatives, collaborating with leading institutions, regional forums, and intergovernmental organizations across East and Southeast Asia. His contributions include formulating ASEAN’s hydrogen energy development roadmap, assessing large-scale green hydrogen demonstration projects, evaluating China’s green hydrogen trade potential, and analyzing the economic value and carbon mitigation impacts of hydrogen fuel cell vehicles. He has also undertaken extensive studies on integrated regional electricity systems, market mechanisms for multilateral power trade, energy infrastructure planning, and strategic pathways for achieving sustainable industrial competitiveness. Dr. Li’s scholarship is characterized by rigorous quantitative modelling, techno-economic assessment, and policy-oriented analysis, consistently bridging academic research with real-world energy planning and strategic decision-making. His academic output includes 29 peer-reviewed journal articles, books, and institutional reports, many published in high-impact outlets such as Energy Policy, International Journal of Hydrogen Energy, Energy Economics, Energy for Sustainable Development, Renewable Energy, and Journal of Cleaner Production. Several of his publications have been recognized as ESI Highly Cited Papers and ESI Hot Papers, reflecting their influence on both scholarly debates and policymaking communities. His research continues to shape regional discourse on hydrogen commercialization, sustainable transport transitions, green industrial development, and long-term energy security strategies across Asia. Dr. Li’s academic influence and research productivity are reflected in his metrics 1,235 citations, 29 documents, and an h-index of 13, underscoring his substantial contributions to global energy and technology policy research.

Profiles: Google Scholar | Scopus | ORCID 

Featured Publications

1. Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703.

2. Shi, X., Liao, X., & Li, Y. (2020). Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework. Renewable Energy, 154, 786–796.

3. Li, Y., & Kimura, S. (2021). Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios. Energy Policy, 148, 111980.

4. Khanna, R. A., Li, Y., Mhaisalkar, S., Kumar, M., & Liang, L. J. (2019). Comprehensive energy poverty index: Measuring energy poverty and identifying micro-level solutions in South and Southeast Asia. Energy Policy, 132, 379–391.

5. Li, Y., Shi, X., & Phoumin, H. (2022). A strategic roadmap for large-scale green hydrogen demonstration and commercialisation in China: A review and survey analysis. International Journal of Hydrogen Energy, 47(58), 24592–24609.

Dragana Marinković | Renewable Energy Systems | Women Researcher Award

Dr. Dragana Marinković | Renewable Energy Systems | Women Researcher Award

Principal Research Fellow | Vinča Institute of Nuclear Sciences | Serbia

Dr. Dragana Marinković is a distinguished Principal Research Fellow at the Vinča Institute of Nuclear Sciences, University of Belgrade, recognized for her extensive contributions to nanomaterials science and their interdisciplinary applications. Her research focuses on advanced synthesis methods for nanomaterials in powder, colloidal, and thin-film forms, along with innovative approaches for their functionalization and coating. She has played a key role in developing next-generation photocatalysts for improved water splitting and environmental remediation, while also advancing nanomaterials used in photocatalysis, adsorption, pigmentation, biosensing, photothermal therapy, antimicrobial systems, biomarkers, scintillation, bioimaging, and optoelectronic technologies. Her scientific leadership is demonstrated through major nationally funded research programs in new materials and nanosciences, complemented by active involvement in international collaborations including HORIZON Europe, HORIZON 2020, and multiple COST Actions, where she has served in significant coordination roles. Participation in bilateral projects and Short-Term Scientific Missions across leading European institutions has further strengthened her contributions to luminescent nanomaterials, upconversion technologies, and advanced carbon-based nanostructures. A prolific scholar, she has authored 73 SCI-indexed publications, eight book chapters, and a scientific monograph, with her work widely referenced across materials science, environmental technologies, clean energy, and biomedical innovation. Her research continues to generate substantial societal impact in environmental protection, sustainable technologies, healthcare applications, and advanced photonics. Dr. Marinković’s academic influence and research excellence are reflected in her strong metrics 3,123 citations, 69 documents, and an h-index of 30, underscoring her sustained contributions to global scientific advancement.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

1. Marinković, D., Righini, G. C., & Ferrari, M. (2025). Synthesis, optical, and photocatalytic properties of the BiVO₄ semiconductor nanoparticles with tetragonal zircon-type structure. Photonics, 12(5), 438.

2. Marinković, D., Righini, G. C., & Ferrari, M. (2025). Advances in synthesis and applications of bismuth vanadate-based structures. Inorganics, 13(8), 268.

3. Marković, Z., Dorontić, S., Jovanović, S., Kovač, J., Milivojević, D., Marinković, D., Mojsin, M., & Todorović Marković, B. (2024). Biocompatible carbon dots/polyurethane composites as potential agents for combating bacterial biofilms: N-doped carbon quantum dots/polyurethane and gamma ray-modified graphene quantum dots/polyurethane composites. Pharmaceutics, 16(12), 1565.

4. Vasiljević, B. R., Prekodravac, J. R., Ranđelović, M. S., Mitrović, J. Z., Bojić, A. Lj., Porobić Katnić, S., Momčilović, M. Z., & Marinković, D. (2024). Enhanced thermal stability and excellent electrochemical and photocatalytic performance of needle-like form of zinc-phthalocyanine. Ceramics International.

5. Vasiljević, B. R., Odobaša, D., Vujičić, I., Filimonović, M. B., Smits, K., Mijin, D., & Marinković, D. (2024). Sustainable and fast synthesis of zinc-phthalocyanine for gamma radiation dosimeter application. Radiation Physics and Chemistry, 211, 111816.

Dr. Dragana Marinković’s work advances the frontiers of nanomaterials science through innovative synthesis strategies and multifunctional applications that address critical challenges in clean energy, environmental protection, and biomedical technology. Her research accelerates the development of next-generation photocatalysts, sensors, and therapeutic platforms, driving scientific innovation with tangible societal and industrial impact.

Lalith Pankaj Raj Nadimuthu | Renewable Energy Systems | Editorial Board Member

Dr. Lalith Pankaj Raj Nadimuthu | Renewable Energy Systems | Editorial Board Member

Guest Faculty | The Gandhigram Rural Institute-Deemed to be University | India

Dr. G. N. Lalith Pankaj Raj is a distinguished researcher and academic specializing in renewable energy systems, focusing on solar photovoltaics, electric mobility, smart grids, thermoelectric refrigeration, and sustainable energy integration for rural advancement. His research centers on developing innovative green technologies to enhance energy efficiency and mitigate climate change. He has contributed significantly to the design of solar-based micro cold storage systems, vehicle-to-grid integration, and decentralized nano-grids that support sustainable livelihoods and rural development. A recipient of the prestigious DST INSPIRE Fellowship, he has published widely in leading international journals such as Scientific Reports, Environmental Science and Pollution Research, IEEE Access, and the Journal of Thermal Analysis and Calorimetry, advancing knowledge in renewable energy conversion, efficiency enhancement, and sustainability transitions. His research excellence has been recognized through multiple Best Paper Awards, academic honors, and national-level distinctions. As an active reviewer and editorial board member for over twenty international journals under Elsevier, Springer Nature, MDPI, and Frontiers, he contributes to advancing global scholarly dialogue in energy engineering and sustainable technologies. His teaching and professional engagements integrate research with application, guiding postgraduate scholars and leading national skill-development programs that align with renewable energy missions and green innovation. He has also authored two books and contributed to three book chapters published by Springer, Elsevier, and other reputed publishers, emphasizing renewable energy innovation, smart infrastructure, and sustainability-oriented education. His interdisciplinary approach continues to drive impactful advancements in sustainable energy technologies and environmental resilience. Dr. Lalith Pankaj Raj’s academic excellence and research influence are reflected in his growing recognition, with 277 citations, 15 publications, and an h-index of 11, underscoring his impactful contributions to the advancement of renewable energy and sustainable technology.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Nadimuthu, L. P. R., Victor, K., Basha, C. H., Mariprasath, T., & Dhanamjayulu, C. (2021). Energy conservation approach for continuous power quality improvement: A case study. IEEE Access, 9, 146959–146969. Cited by: 52

2. Nadimuthu, L. P. R., & Victor, K. (2022). Environmental friendly micro cold storage for last-mile Covid-19 vaccine logistics. Environmental Science and Pollution Research, 29(16), 23767–23778. Cited by: 42

3. Nadimuthu, L. P. R., & Victor, K. (2021). Performance analysis and optimization of solar-powered E-rickshaw for environmental sustainability in rural transportation. Environmental Science and Pollution Research, 28, 34278–34289. Cited by: 41

4. Nadimuthu, L. P. R., & Victor, K. (2021). Energy efficiency enhancement and climate change mitigations of SMEs through grid-interactive solar photovoltaic system. International Journal of Photoenergy.Cited by: 37

5. Nadimuthu, L. P. R., Victor, K., Bajaj, M., & Tuka, M. B. (2024). Feasibility of renewable energy microgrids with vehicle-to-grid technology for smart villages: A case study from India. Results in Engineering, 24, 103474. Cited by: 20

Dr. G. N. Lalith Pankaj Raj’s work advances global sustainability by integrating renewable energy innovations with real-world applications that enhance energy access, efficiency, and climate resilience. His research bridges science and society, driving transformative progress in green technologies, rural empowerment, and low-carbon development.

Tao Sun | Renewable Energy Systems | Best Researcher Award

Prof. Tao Sun | Renewable Energy Systems | Best Researcher Award

Professor | Northwest University | China

Dr. Tao Sun is a distinguished Professor at the School of Chemical Engineering, Northwest University, China, widely recognized for his pioneering contributions to the fields of energy conversion and environmental catalysis. His research focuses on the rational design and synthesis of nanostructured and single-atom materials for electrocatalysis, photocatalysis, water splitting, fuel cells, metal–air batteries, and CO₂ reduction. By integrating advanced concepts in atomic-level engineering, heterojunction construction, and defect chemistry, he has developed highly efficient and durable materials that address pressing global challenges in clean energy generation and pollutant degradation. Dr. Sun has authored more than ninety peer-reviewed publications, including numerous papers as first or corresponding author in internationally renowned journals such as Nature Nanotechnology, Advanced Materials, Advanced Functional Materials, ACS Nano, ACS Catalysis, and Advanced Science. His research has achieved substantial global recognition, reflected by thousands of citations and a strong h-index, underscoring his scientific influence and leadership in catalysis and materials chemistry. In addition to his prolific research output, Dr. Sun serves as a reviewer for over fifty leading international journals and contributes to the scholarly community as a youth editor for EcoEnergy, Advanced Powder Materials, and Carbon Energy. His work bridges fundamental science and applied technology, offering innovative strategies for sustainable energy conversion, carbon-neutral pathways, and environmental protection. Through his commitment to advancing catalyst design and clean energy technologies, Dr. Tao Sun continues to make impactful contributions that shape the future of green chemistry and sustainable materials engineering. Dr. Tao Sun’s academic excellence is reflected in his global research influence, with 6,780 citations, 94 publications, and an h-index of 38, highlighting his leading role in the field of materials and energy science.

Profiles: Scopus | ORCID

Featured Publications

1. Sun, T., et al. (2025). Photocatalytic H₂ evolution over Ni₃(PO₄)₂/twinned-Cd₀.₅Zn₀.₅S S-scheme homo-heterojunction using degradable plastics as electron donors. Journal of Materials Science and Technology. Citations: 8

2. Sun, T., et al. (2025). Efficient hydrogen production coupled with polylactic acid plastic electro-treatment over a CoFe LDH/MoSe₂/NixSey/NF heterostructure electrocatalyst. ACS Sustainable Chemistry & Engineering. Citations: 4

3. Sun, T., et al. (2025). Co₃S₄/MnS p–p heterojunction as a highly efficient electrocatalyst for water splitting and electrochemical oxidation of organic molecules. Journal of Colloid and Interface Science. Citations: 10

4. Sun, T., et al. (2025). Efficient photocatalytic H₂ evolution over SnS₂/twinned Mn₀.₅Cd₀.₅S hetero-homojunction with double S-scheme charge transfer routes. Journal of Materials Science and Technology. Citations: 31

5. Sun, T., et al. (2025). Tuning interfacial charge transfer for efficient photodegradation of tetracycline hydrochloride over Ti₃C₂/Bi₁₂O₁₇Cl₂ Schottky heterojunction and theoretical calculations. Applied Surface Science. Citations: 16

Dr. Tao Sun’s pioneering research in photocatalysis and electrocatalysis advances sustainable hydrogen production and plastic waste valorization, bridging clean energy generation with environmental remediation. His innovative heterostructure designs drive global progress toward carbon-neutral technologies and circular energy systems, fostering transformative impact across science, industry, and society.