Derese Kebede Teklie | Renewable Energy | Best Academic Researcher Award

Dr. Derese Kebede Teklie | Renewable Energy | Best Academic Researcher Award

Researcher | Istanbul Technical University | Ethiopia

Dr. Derese Kebede Teklie is an accomplished scholar in Development and Environmental Economics with a strong focus on the intersection of green economy, institutional quality, and sustainable development in Africa. Born on August 19, 1988, in Arsi, Ethiopia, he holds a Ph.D. in Economics from Istanbul Technical University, Turkey, under the supervision of Assoc. Prof. Dr. Mete Han Yağmur. He is also pursuing a second Ph.D. in Green Economy and Sustainability at Brescia University, Italy, expanding his expertise in environmental policy and sustainable growth. Dr. Teklie earned his M.Sc. in Development Economics from Debre Markos University, Ethiopia, and a B.A. in Economics from Mekelle University. His academic journey has been enhanced by international exposure through the Erasmus Exchange Program at Istanbul Kültür University, fostering global research collaboration and cross-cultural learning. Professionally, he serves as an Assistant Researcher at Istanbul Technical University, contributing to projects on Africa’s economic growth, environmental sustainability, and green innovation. Previously, he worked as a Lecturer at Rift Valley University, Ethiopia, and held key roles in NGO project coordination and government research institutes, demonstrating his versatility across academia, research, and community development. His research interests include environmental economics, green growth, renewable energy policy, institutional development, and econometric modeling. Dr. Teklie is skilled in advanced analytical tools such as STATA, SPSS, EViews, MATLAB, Python, and CGE modeling, reflecting his technical proficiency in empirical research. His publications in Sustainability and the International Journal of Energy Economics and Policy address pressing issues in Africa’s environmental and economic transformation. Recognized for his academic dedication and contributions to sustainable development, Dr. Teklie continues to advance impactful interdisciplinary research and international collaboration. Dr. Derese Kebede Teklie’s academic impact is reflected in his growing recognition with 19 citations, 3 documents, and an h-index of 2, highlighting his emerging influence in environmental and development economics research.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1. Teklie, D. K., & Yağmur, M. H. (2024). The Role of Green Innovation, Renewable Energy, and Institutional Quality in Promoting Green Growth: Evidence from African Countries. Sustainability, 16(14), 6166.

2. Teklie, D. K., & Yağmur, M. H. (2024). Effect of Economic Growth on CO₂ Emission in Africa: Do Financial Development and Globalization Matter? International Journal of Energy Economics and Policy, 14(1), 121–140.

3. Teklie, D. K., & Doğan, B. (2024). Analyzing the Dynamics: Asymmetric Effects of Economic Growth, Technological Innovation, and Renewable Energy on Carbon Emissions in Africa. International Journal of Energy Economics and Policy, 14(5), 509–519.

4. Teklie, D. K. (2021). Rural Household Poverty and Its Determining Factors: A Poverty Analysis Using Alternative Measurement Approaches. International Journal of Advanced Research.

Guanglong Ge | Energy Storage | Best Researcher Award

Dr. Guanglong Ge | Energy Storage | Best Researcher Award

Postdoctoral | Tongji University | China

Dr. Guanglong Ge is a distinguished materials scientist specializing in antiferroelectric, ferroelectric, relaxor ferroelectric, and dielectric materials, with a strong focus on energy storage performance, electrocaloric effects, piezoelectric properties, and structure–property relationships. He earned his Ph.D. in Materials Science from Tongji University, China (2017–2022), following his B.Sc. in Inorganic Materials from Chang’an University (2013–2017). Currently serving as a Postdoctoral Researcher at Tongji University, Dr. Ge leads cutting-edge investigations on the energy storage performance of antiferroelectric ceramics, supported by prestigious funding such as the Sino-German (CSC-DAAD) Postdoc Scholarship, China Postdoctoral Science Foundation, and the Shanghai Postdoctoral Excellence Program. His research contributions have significantly advanced the understanding of multilayer ceramic capacitors and field-induced structural evolution in dielectric materials. Dr. Ge’s professional experience includes participation in national and international R&D programs and collaborative projects aimed at developing high-performance energy storage materials with broad technological relevance. His key research skills encompass materials synthesis, dielectric characterization, in-situ structural analysis, and multiphysics coupling simulation, enabling him to uncover critical insights into phase transitions and energy optimization mechanisms. Recognized for his innovative contributions, Dr. Ge has published over 66 peer-reviewed papers in top journals, including Advanced Materials, Nature Communications, Science Advances, and Energy Storage Materials, and has delivered presentations at major international conferences such as the Ferroelectric International Seminar and the China–Japan Symposium on Ferroelectric Materials. His dedication has earned him multiple awards, including competitive postdoctoral fellowships and recognition for scientific excellence in dielectric research. Dr. Ge’s future research aims to pioneer next-generation sustainable energy storage technologies through interdisciplinary collaboration and advanced material design. Dr. Guanglong Ge’s academic impact is further reflected in his growing recognition with 2,662 citations, 66 documents, and an h-index of 27, demonstrating his influential role in advancing antiferroelectric ceramics and energy storage materials research.

Profiles: Scopus | ORCID

Featured Publications

1. Ge, G., Zeng, H., Qian, J., Shen, B., Cheng, Z., Zhai, J., Liu, Y., Wang, D., & He, L. (2025). Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering. Nature Communications. Citations: 7

2. Ge, G., Chen, C., Qian, J., Lin, J., Shi, C., Li, G., Wang, S., & Zhai, J. (2025). Local heterogeneous dipolar structures drive gigantic capacitive energy storage in antiferroelectric ceramics. Nature Communications. Citations: 2

3. Ge, G., Yang, J., Shi, C., Lin, J., Hao, Y., & Wei, Y. (2025). Nano-domain configuration boosting energy storage capacity of NaNbO3-based relaxor ferroelectrics. Journal of Power Sources. Citations: 1

4. Ge, G., Hao, Y., Lin, J., Shi, C., & Yao, W. (2025). Outstanding comprehensive piezoelectric properties in KNN-based ceramics via co-optimization of crystal structure and grain orientation. Acta Materialia.

5. Ge, G., Qian, J., Chen, C., Shi, C., Lin, J., Li, G., & Zhai, J. (2025). Excellent energy storage performance of polymorphic modulated antiferroelectric lead zirconate ceramic. Advanced Materials. Citations: 1

 

You Qiang | Nanotechnology for Renewable Energy | Best Faculty Award

Prof. Dr. You Qiang | Nanotechnology for Renewable Energy | Best Faculty Award

Professor | University of Idaho | United States

Dr. You Qiang, a distinguished Professor of Physics at the University of Idaho, has dedicated over four decades to pioneering research in nanoparticles and nanomaterials, with a particular focus on nanoclusters, nanocomposites, and their magnetic, optical, and transport properties. He received his B.S. in Engineering Physics from Hefei University of Technology, China, an M.S. in Physics from Harbin Institute of Technology and the Chinese Academy of Space Technology, and his Ph.D. in Physics from the University of Freiburg, Germany. His professional journey includes significant roles as Research Scientist and Senior Scientist at the University of Freiburg, Research Assistant Professor at the University of Nebraska-Lincoln, and since 2002, a progressive career from Assistant to Full Professor at the University of Idaho, where he also holds an adjunct appointment in Nuclear Engineering. Dr. Qiang’s research interests lie in the synthesis and characterization of advanced nanomaterials and their application to nuclear energy, radiation detection, and radioactive waste separation, integrating fundamental physics with practical technological solutions. His research skills span experimental synthesis, advanced spectroscopy, ion irradiation studies, and nanoscale materials characterization, contributing to high-impact publications in JACS, Nanoscale, Environmental Science & Technology, Advanced Functional Materials, and Journal of Physical Chemistry C. Beyond his scholarly output, he has demonstrated strong leadership as President of the Idaho Academy of Science and Engineering, organizer and chair of multiple international conferences, and editorial board member for leading journals. His dedication to mentorship has been recognized with multiple Alumni Awards for Excellence in Graduate Student Mentorship, underscoring his commitment to training the next generation of scientists. Dr. Qiang’s academic impact is substantial, with his growing recognition reflected in 2,906 citations, 97 documents, and an h-index of 27, demonstrating his influential role in advancing nanomaterials and nuclear energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Haberland, H., Mall, M., Moseler, M., Qiang, Y., Reiners, T., & Thurner, Y. (1994). Filling of micron‐sized contact holes with copper by energetic cluster impact. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 12(5), 2925–2930. Cited by: 540

2. Wang, C. M., Baer, D. R., Thomas, L. E., Amonette, J. E., Antony, J., & Qiang, Y. (2005). Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. Journal of Applied Physics, 98(9), 094308. Cited by: 331

3. Wang, C., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 131(25), 8824–8832. Cited by: 290

4. Qiang, Y., Antony, J., Sharma, A., Nutting, J., Sikes, D., & Meyer, D. (2006). Iron/iron oxide core-shell nanoclusters for biomedical applications. Journal of Nanoparticle Research, 8(3), 489–496. Cited by: 262

5. Baer, D. R., Amonette, J. E., Engelhard, M. H., Gaspar, D. J., Karakoti, A. S., Kuchibhatla, S. V. N. T., & Qiang, Y. (2008). Characterization challenges for nanomaterials. Surface and Interface Analysis, 40(3–4), 529–537. Cited by: 189

Vahed Ghiasi | Renewable Energy | Pioneer Researcher Award

Assist. Prof. Dr. Vahed Ghiasi | Renewable Energy | Pioneer Researcher Award

Assistant Professor | Malayer university | Iran

Dr. Vahed Ghiasi is an accomplished civil and geotechnical engineer with a Ph.D. in Geotechnical and Geological Engineering from University Putra Malaysia (2012), where his research focused on the effects of weak rock geomechanical properties on tunnel stability. He currently serves as Assistant Professor at the Faculty of Civil and Architecture Engineering, Malayer University, Iran, with extensive experience in supervising graduate students, managing large-scale research projects, and contributing to both national and international engineering initiatives. His professional expertise encompasses tunnel engineering, soil-structure interaction, foundation engineering, advanced soil mechanics, and landslide hazard assessment, supported by practical work in seismic and earth dam engineering. Dr. Ghiasi has led numerous research projects, including international collaborations on landslide hazard mapping using neural networks and fuzzy logic, while publishing over 130 peer-reviewed articles in high-impact journals such as SN Applied Sciences, Results in Engineering, Geomechanics and Engineering, and Natural Hazards. He is also an active contributor to the global scientific community, serving on editorial boards for journals like SN Applied Sciences and Applied Engineering and Technology, and reviewing for more than 20 international journals. His research interests include geotechnical design, tunnel stability analysis, landslide risk assessment, soil improvement, and advanced numerical modeling techniques, utilizing software such as PLAXIS, PHASE 2 FEM, and FDM. Dr. Ghiasi’s professional involvement extends to memberships in prominent societies including SEAGS, IGS, ITA-AITES, ASCE, and IEM, and he has been recognized with awards such as the Most Outstanding Iranian Student in Malaysia (2011) and Superior Researcher of the Faculty of Civil Engineering, Malayer University (2019–2023). His work demonstrates a commitment to advancing geotechnical engineering knowledge, mentoring future engineers, and contributing to resilient infrastructure development. Dr. Ghiasi’s growing academic impact is reflected in 316 citations, 45 documents, and an h-index of 11, demonstrating his sustained influence in geotechnical engineering research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Safaei, M., Omar, H., Huat, B. K., Yousof, Z. B. M., & Ghiasi, V. (2011). Deterministic rainfall induced landslide approaches, advantage and limitation. Electronic Journal of Geotechnical Engineering, 16, 1619–1650. Cited by 47

2. Mafian, S., Huat, B. B. K., & Ghiasi, V. (2009). Evaluation on root theories and root strength properties in slope stability. European Journal of Scientific Research, 30(4), 594–607. Cited by 43

3. Ghiasi, V., & Koushki, M. (2020). Numerical and artificial neural network analyses of ground surface settlement of tunnel in saturated soil. SN Applied Sciences, 2(5), 939. Cited by 42

4. Kazemian, S., Prasad, A., Huat, B. B. K., Ghiasi, V., & Ghareh, S. (2012). Effects of cement–sodium silicate system grout on tropical organic soils. Arabian Journal for Science and Engineering, 37(8), 2137–2148. Cited by 38

5. Safaei, M., Omar, H., Yousof, Z. B. M., & Ghiasi, V. (2010). Applying geospatial technology to landslide susceptibility assessment. Electronic Journal of Geotechnical Engineering, 15(G), 677–696. Cited by 31

 

Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Mr. Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Lecturer and Bioenergy research group coordinator | Bahir Dar University | Ethiopia

Mr. Tesfa Nega Gesese is a Lecturer and Bioenergy Research Group Coordinator at Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia, with over seven years of teaching and research experience. He holds an M.Sc. in Chemical Engineering and has built a strong academic foundation in renewable energy, waste valorisation, and greenhouse gas mitigation. His professional experience includes serving as a lecturer, course chair, and project leader, where he has coordinated large-scale research initiatives such as the mega project on integrated production of bioethanol, bio-hydrogen, and biogas from sesame stalk feedstock, as well as thematic research on computational modelling of anaerobic digestion and photosynthetic algae integration. His research interests span biomass valorisation, biofuels, pyrolysis, gasification, bio-composite materials, and sustainable energy systems. He has demonstrated advanced research skills in biomass pyrolysis kinetics, waste-to-energy conversion, and the development of renewable energy pathways tailored to local resources. Mr. Tesfa has authored and co-authored more than 15 peer-reviewed publications indexed in Scopus and Web of Science, focusing on biomass conversion technologies, bio-based materials, and environmental sustainability. His leadership role as a bioenergy research coordinator has enabled him to foster collaborative research, mentor young scholars, and deliver impactful solutions addressing Ethiopia’s energy challenges. He has also contributed to the scientific community as a reviewer for international journals and as a member of the Society of Ethiopian Chemical Engineers. His dedication to research excellence has earned recognition through funded research projects and academic achievements that align with global sustainability goals. Overall, Mr. Tesfa is committed to advancing bioenergy innovation, expanding international collaborations, and influencing policy toward clean energy transitions. Mr. Tesfa Nega Gesese’s growing academic impact is reflected in 26 citations, 10 documents, and an h-index of 3, demonstrating his emerging influence in the field of bioenergy and sustainable engineering.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

1. Mersha, D. A., Gesese, T. N., Sendekie, Z. B., Admase, A. T., & Bezie, A. J. (2024). Operating conditions, products and sustainable recycling routes of aminolysis of polyethylene terephthalate (PET)–A review. Polymer Bulletin, 81(13), 11563–11579. Cited by: 20

2. Bantie, Z., Tezera, A., Abera, D., & Nega, T. (2024). Nanoclays as fillers for performance enhancement in building and construction industries: State of the art and future trends. In Developments in Clay Science and Construction Techniques. Cited by: 11

3. Gesese, T. N., Fanta, S. W., Mersha, D. A., & Satheesh, N. (2022). Physical properties and antibacterial activity of cotton fabric treated with methanolic extracts of Solanum incanum fruits and red onion peels. The Journal of The Textile Institute, 113(2), 292–302. Cited by: 6

4. Gesese, T. N., Getahun, E., & Getahun, A. A. (2024). Investigation of thermal degradation properties and chemical kinetic characteristics of biomass pyrolysis via TG/DTG and FTIR techniques: Sesame stalks as a potential source. International Journal of Energy Research, 2024(1), 8891126. Cited by: 4

5. Gesese, T. N., Getahun, E., & Getahun, A. A. (2025). Pyrolysis kinetics, thermodynamics, and reaction performance of wheat straw and water hyacinth using TGA‐DTG analysis: Bioenergy potential in Ethiopia. Biofuels, Bioproducts and Biorefining, 19(3), 705–729.  Cited by: 2

 

Valeria Cafaro | Bioenergy | Best Researcher Award

Dr. Valeria Cafaro | Bioenergy | Best Researcher Award

Post – Doc researcher | National Research Council of Italy – Institute of BioEconomy| Italy

Dr. Valeria Cafaro is a dedicated Post-Doctoral Researcher at the National Research Council of Italy – Institute of BioEconomy (CNR–IBE), Catania, Sicily, specializing in crop physiology, sustainable agronomic practices, and genetic improvement of Mediterranean crops under abiotic stress. She holds a Ph.D. in Agricultural, Food, and Environmental Science (Doctor Europaeus, University of Catania), where her research focused on strategies to improve crop resilience and productivity under challenging climate conditions. Professionally, she contributes to the Agritech PNRR project on tomato adaptation to climate change and collaborates on research initiatives including Multicanapa and Ricinolio. Her research interests encompass plant adaptation to drought, salinity, and climate variability, seed biology, sowing optimization, and integrating molecular tools with field experimentation to improve yield, quality, and nutraceutical properties. Dr. Cafaro’s research skills include advanced plant phenotyping, statistical data analysis, experimental design, and development of sustainable crop management protocols. She has authored 11 peer-reviewed articles in Scopus/WoS-indexed journals, with one under review, and presented over 20 contributions at international conferences such as SIA, SOI, EUBCE, and ISHS, earning multiple awards for excellence in plant physiology and agronomy research. She serves as Guest Editor for Horticulturae (Special Issue: “Seed Biology in Horticulture: From Dormancy to Germination”) and peer reviewer for reputed journals including Agronomy, Plants, and International Journal of Molecular Sciences. Professionally, she is a member of the Società Italiana di Agronomia (SIA) and holds formal qualifications as Agronomist and Biologist. Dr. Cafaro’s growing academic impact is reflected in 59 citations, 15 documents, and an h-index of 5, demonstrating her significant and sustained influence in the field of crop physiology and climate-resilient agriculture.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn 

Featured Publications

1. Badagliacca, G., Testa, G., La Malfa, S. G., Cafaro, V., Lo Presti, E., & Monti, M. (2024). Organic fertilizers and bio-waste for sustainable soil management to support crops and control greenhouse gas emissions in Mediterranean agroecosystems: A review. Horticulturae, 10(5), 427. Cited by: 28

2. Arlotta, C., Ciacciulli, A., Strano, M. C., Cafaro, V., Salonia, F., Caruso, P., & Others. (2020). Disease resistant citrus breeding using newly developed high resolution melting and CAPS protocols for Alternaria brown spot marker assisted selection. Agronomy, 10(9), 1368. Cited by: 24

3. Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Germination response of different castor bean genotypes to temperature for early and late sowing adaptation in the Mediterranean regions. Agriculture, 13(8), 1569. Cited by: 12

4. Lippolis, A., Gezan, S. A., Zuidgeest, J., Cafaro, V., van Dinter, B. J., Elzes, G., & Others. (2025). Targeted genotyping (90K-SPET) facilitates genome-wide association studies and the prediction of yield-related traits in faba bean (Vicia faba L.). BMC Plant Biology, 25(1), 558. Cited by: 3

5. Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Assessment of germination response to salinity stress in castor through the hydrotime model. Agronomy, 13(11), 2783. 
Cited by: 6

Muhammad Ali Shahbaz | Bioenergy | Best Researcher Award

Dr. Muhammad Ali Shahbaz | Bioenergy | Best Researcher Award

Assistant Professor | University of Engineering and Technology | Pakistan

Dr.-Ing. Muhammad Ali Shahbaz is an accomplished academic and researcher in Mechanical Engineering, currently serving as an Assistant Professor at the Automotive Engineering Centre, University of Engineering and Technology (UET) Lahore, Pakistan. He earned his Ph.D. in Mechanical Engineering from the University of Duisburg-Essen, Germany, where his research focused on developing advanced endoscopic optical diagnostics for combustion engines, including temperature imaging, fuel film analysis, and soot incandescence studies. His M.Sc. research involved visualization of flame fronts using OH*-chemiluminescence and LIF techniques, and he holds a B.Sc. in Mechanical Engineering from UET Lahore with a thesis on biodiesel synthesis and engine performance. Professionally, he has over 14 years of teaching and research experience, having supervised multiple master’s and bachelor’s theses, reviewed and developed graduate curricula, and advised government agencies on EV policy and emissions testing standards. His research interests span optical diagnostics for internal combustion engines, alternative fuels, pyrolysis for bio-oil and biochar, waste-to-energy technologies, renewable energy systems, and integrated solid waste management. He possesses strong experimental and analytical skills in LIF, chemiluminescence, soot imaging, MATLAB, instrumentation, and pyrolysis systems. Dr. Shahbaz has contributed to major projects including EU Horizon 2020 research, biodiesel optimization funded by HEC Pakistan, and vibration analysis for electric vehicle development. His work is widely published in reputed journals such as Applied Optics, Experiments in Fluids, and Energy Science & Engineering and presented at global conferences including the Gordon Research Conference and European Combustion Meeting. He is the recipient of multiple awards including the Best Teacher Award and DAAD Scholarship. His growing academic impact is reflected in 2,940 citations, 139 documents, and an h-index of 31, demonstrating his significant and sustained influence in the field of combustion diagnostics and sustainable energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Munir, M. A., Habib, M. S., Hussain, A., Shahbaz, M. A., Qamar, A., Masood, T., Sultan, M., Mujtaba, M. A., Imran, S., Hasan, M., Akhtar, M. S., Ayub, H. M. U., & Salman, C. A. (2022). Blockchain adoption for sustainable supply chain management: Economic, environmental, and social perspectives. Frontiers in Energy Research, 10, 899632. (Cited by 150)

2. Razzaq, L., Mujtaba, M. A., Shahbaz, M. A., Nawaz, S., Khan, H. M., Hussain, A., & others. (2022). Effect of biodiesel–dimethyl carbonate blends on engine performance, combustion and emission characteristics. Alexandria Engineering Journal, 61(7), 5111–5121.  (Cited by 33)

3. Nawaz, A., Ahmed, Z., Shahbaz, A., Khan, Z., & Javed, M. (2014). Coagulation–flocculation for lignin removal from wastewater – A review. Water Science and Technology, 69(8), 1589–1597. (Cited by 27)

4. Shahbaz, M. A., Jüngst, N., Grzeszik, R., & Kaiser, S. A. (2021). Endoscopic fuel film, chemiluminescence, and soot incandescence imaging in a direct-injection spark-ignition engine. Proceedings of the Combustion Institute, 38(4), 5869–5877. (Cited by 12)

5. Nawaz, A., Shahbaz, M. A., & Javed, M. (2015). Management of organic content in municipal solid waste – A case study of Lahore. International Journal of Environment and Waste Management, 15(1), 15–23. (Cited by 8)

 

Suresh Kumar Patra | Energy Education | Best Researcher Award

Prof. Dr. Suresh Kumar Patra | Energy Education | Best Researcher Award

Distinguished Professor | Siksha ‘O’ Anusandhan | India

Dr. Suresh Kumar Patra is a Distinguished Professor in the Department of Physics at Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, and Visiting Professor at the Satananda Institute of Astronomy, Puri. He earned his Ph.D. in Nuclear Physics Theory from the Institute of Physics, Bhubaneswar, where his thesis focused on the relativistic mean-field study of beta-stable and beta-unstable nuclei. His professional career spans over two decades at the Institute of Physics, Bhubaneswar, where he progressed from Senior Lecturer to Professor before assuming his current role. Dr. Patra’s international experience includes postdoctoral fellowships and visiting research roles in Germany (Alexander von Humboldt Fellow), Japan (Monbusho Fellow), Spain, the United Kingdom (EPSRC Fellow), Taiwan, Portugal, and collaborations at GSI Darmstadt, University of Barcelona, and University of Surrey. His research interests include nuclear structure, neutron star physics, relativistic mean-field theory, superheavy nuclei, quarkyonic matter, and the role of dark matter in astrophysical phenomena. He has successfully led several major Indo-German, DST-SERB, BRNS, and international collaborative projects. Dr. Patra is an accomplished research mentor, having supervised more than 17 Ph.D. students and guided postdoctoral fellows, many of whom are now faculty members worldwide. Skilled in advanced computational physics, FORTRAN programming, and modeling of nuclear many-body systems, he also serves as an active reviewer for high-impact journals such as Physical Review C, Physical Review Letters, Nuclear Physics A, and JCAP. Beyond research, he contributes to science outreach as Vice-President of the Samanta Chandra Sekhar Amateur Astronomers’ Association and Patron Member of the Odisha Physical Society. His growing academic impact is reflected in 4,205 citations by 1,920 documents, 241 indexed publications, and an h-index of 35, demonstrating his significant and sustained influence on global nuclear physics research.

Profiles: Google Scholar | Scopus | ORCID 

Featured Publications

1. Kumar, B., Patra, S. K., & Agrawal, B. K. (2018). New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars. Physical Review C, 97(4), 045806. Cited by 187.

2. Patra, S. K., & Praharaj, C. R. (1991). Relativistic mean field study of light medium nuclei away from beta stability. Physical Review C, 44(6), 2552. Cited by 178.

3. Del Estal, M., Centelles, M., Viñas, X., & Patra, S. K. (2001). Pairing properties in relativistic mean field models obtained from effective field theory. Physical Review C, 63(4), 044321. Cited by 163.

4. Patra, S. K., Wu, C. L., Praharaj, C. R., & Gupta, R. K. (1999). A systematic study of superheavy nuclei for Z = 114 and beyond using the relativistic mean field approach. Nuclear Physics A, 651(2), 117–139. Cited by 142.

5. Del Estal, M., Centelles, M., Viñas, X., & Patra, S. K. (2001). Effects of new nonlinear couplings in relativistic effective field theory. Physical Review C, 63(2), 024314. Cited by 135.

Oluwaseun Akinte | Energy Management | Best Researcher Award

Dr. Oluwaseun Akinte | Energy Management | Best Researcher Award

Rajamangala University of Technology Thanyaburi | Thailand

Dr. Oluwaseun Olanrewaju Akinte is an accomplished researcher in renewable energy systems, microgrid-utility grid integration, and advanced energy storage optimization, with a strong focus on developing sustainable and economically viable energy solutions. He holds a Ph.D. in Energy and Materials Engineering from Rajamangala University of Technology Thanyaburi, an MSc in Electrical and Electronic Engineering from Coventry University, United Kingdom, and a BSc from Olabisi Onabanjo University, Nigeria. His professional experience spans research assistantship at RMUTT’s Research and Service Energy Center (RSEC), volunteer lecturing at the University of the People (USA), project engineering roles in Nigeria, and academic tutoring. Dr. Akinte’s research interests include renewable energy system design, techno-econometric modeling of hybrid microgrids, optimization of control strategies, and integration of smart grid topologies. He is proficient in MATLAB, Simulink, HOMER Pro/GRID, ETAP, PSIM, and advanced modeling of power systems, power quality analysis, and biomass-to-energy conversion technologies. His experimental skills extend to hybrid energy storage design, closed-loop control algorithm implementation, and techno-economic feasibility analysis for microgrid deployment. Among his notable honors are the E-CUBE-I RMUTT Scholarship and Best Oral Presentation at ESS 4 for work on energy assessment and power reserve networks. He has delivered invited talks at PMU-B Brainpower Congress, International Conference on Power, Energy and Innovations (ICPEI), and the Eco-Energy Symposium. With numerous peer-reviewed publications in reputed journals such as IEEE Access, Sustainability, Franklin Open, and Energies, his work has significantly contributed to advancing the efficiency and reliability of hybrid energy networks. Dr. Akinte’s leadership, global collaborations, and commitment to mentoring emerging researchers position him as a future leader in the renewable energy sector. His growing academic impact is reflected in 18 citations by 18 documents, 5 documents indexed, and an h-index of 2.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

1. Aina, T. S., Akinte, O. O., & Iyaomolere, B. A. (2022). Investigation on performance of microstrip patch antenna for a practical wireless local area network (WLAN) application. International Journal of Research in Applied Science and Engineering Technology, 10(5), 221–226. (Cited by 4)

2. Aina, T., Akinte, O. O., Iyaomolere, B., Tosin, A. E., Abode, I. I., & Awelewa, A. J. (2022). Implementation of an intelligent motion detector. International Research Journal of Engineering and Technology, 9(1), 1148–1165. (Cited by 3)

3. Aina, T. S., Akinte, O. O., Iyaomolere, B. A., Iriaoghuan, A. I., & Samson, U. A. (2021). Development of a low-cost automatic Internet of Things extension system. Development, 1(1), 1–8. (Cited by 2)

4. Aina, T. S., Akinte, O. O., Awelewa, A. J., & Adelakun, D. O. (2022). Critical evaluation of waterfall project management methodology: A case study of digital management conference project. International Journal of Advanced Multidisciplinary Research and Studies, 2(1), 1–10. (Cited by 8)

5. Akinte, O. O., & Aina, T. S. (2021). HVAC vs HVDC power system: Contemporary development in HVAC and HVDC power transmission system. International Journal of Scientific & Technology Research, 19, 252–261. (Cited by 6)

Jihan Ahmad As-sya’bani | Energy Justice | Best Researcher Award

Mr. Jihan Ahmad As-sya’bani | Energy Justice | Best Researcher Award

Master Student at Carl von Ossietzky Universität Oldenburg, Germany

Jihan Ahmad As-sya’bani is a dedicated researcher in the field of renewable energy, with expertise spanning wind energy, biogas, and sustainable energy transitions. With a background in physics and advanced training in renewable energy technologies, he has combined scientific rigor with applied solutions to address global energy challenges. His academic journey and professional engagements reflect a balance of technical depth, policy-level insight, and community impact. He has actively contributed to international projects, renewable energy modeling, and the development of national standards for biogas systems. Beyond research, he has demonstrated strong leadership through team coordination, stakeholder engagement, and mentoring roles in both academic and community-based initiatives. His work emphasizes innovation, sustainability, and global responsibility in energy development, making him a well-rounded candidate with significant contributions to science, society, and environmental stewardship. His professional trajectory highlights both strong research capability and impactful community engagement.

Professional Profile 

ORCID Profile 

Education

Jihan’s educational foundation began with a degree in physics, where he explored advanced topics such as plasma physics and quantum mechanics, supported by thesis research on computational models in toroidal systems. Building on this scientific base, he pursued a master’s program in sustainable renewable energy technologies, specializing in wind energy and energy systems optimization. His academic training was strengthened by a prestigious international fellowship, reflecting both his academic excellence and his potential to contribute to global sustainable development. His studies combined rigorous coursework, laboratory practice, and applied field training in renewable energy systems, enabling him to bridge theoretical principles with practical applications. Participation in specialized schools and workshops in plasma physics, fusion technology, and renewable energy further broadened his knowledge and international exposure. Through this academic path, he developed the technical expertise, interdisciplinary perspective, and global outlook required to contribute meaningfully to the advancement of sustainable energy solutions.

Experience

Jihan’s professional experience demonstrates a strong integration of research, applied science, and community development. As a research assistant at a leading wind energy research institute, he worked on high-performance simulations of wind farm wake effects, supporting advanced optimization models for renewable energy systems. In parallel, his work with a biogas technology company focused on carbon accounting, plant operation planning, and sustainable waste-to-energy solutions. He has also served as team leader for a multi-stakeholder river conservation project, where he coordinated governmental, private, and community actors to achieve long-term environmental protection goals. Earlier roles include contributing to national-scale biogas programs that improved rural energy access, teaching physics under international curricula, and assisting in laboratory and aerospace research projects. This diverse experience highlights his ability to operate across academic, industrial, and social sectors, making meaningful contributions at both technical and community levels. His career reflects adaptability, leadership, and multidisciplinary expertise.

Research Interest

Jihan’s research interests lie at the intersection of renewable energy technologies, sustainability, and global energy transitions. His work primarily focuses on wind energy simulation and optimization, biogas quality improvement, and carbon accounting methods for sustainable energy systems. He is deeply interested in advancing modeling tools that integrate data-driven methods with high-performance computing to optimize renewable energy deployment. Alongside technical work, he also pursues studies on policy and fairness in global energy transitions, particularly in comparing responsibilities between developed and developing regions. His interest extends to fusion energy and plasma physics, where he has participated in specialized training and workshops to explore emerging frontiers in energy research. By combining technical simulation, applied renewable projects, and policy-level analysis, his research seeks to contribute both to scientific advancement and to practical frameworks for global sustainability. He aspires to bridge academic research with real-world implementation for maximum societal impact.

Awards and Honors

Jihan has earned recognition for his academic and professional excellence through competitive fellowships, certifications, and research project grants. He was awarded a prestigious postgraduate fellowship that supports outstanding scholars in development-related fields, highlighting his potential to contribute globally to sustainable energy. His research initiatives have been supported through institutional research funding, enabling him to conduct comparative studies on fairness in energy transitions and develop practical renewable energy innovations. He has also been a co-researcher in projects backed by national standardization agencies, contributing to policy-relevant outcomes such as biogas quality requirements. In addition, he has received advanced certification in greenhouse gas inventory methodology under international guidelines, strengthening his credibility in climate-related fields. His academic achievements include strong international exposure through schools and workshops, often awarded on a competitive basis. These honors reflect his intellectual merit, leadership potential, and ongoing commitment to advancing renewable energy research and global sustainability.

Research Skills

Jihan possesses a wide range of research skills that combine computational, technical, and analytical expertise. He is proficient in high-performance computing applications, enabling him to handle complex wind farm simulations and optimize models for renewable energy projects. His technical toolkit includes numerical modeling, energy systems analysis, and simulation software relevant to wind, solar, and biogas research. In addition, he has strong capabilities in carbon accounting, life-cycle analysis, and environmental impact assessment, which strengthen the policy and sustainability dimensions of his work. His laboratory experience ranges from computational physics to plasma and atomic experiments, providing a robust scientific foundation. Complementing these are practical project management and community engagement skills, gained through leadership in renewable energy and conservation projects. He is also adept in technical writing, scientific communication, and presenting research at international platforms. Together, these skills position him as a versatile researcher capable of contributing across academic, industrial, and policy domains.

Publication Top Notes

Title: Assessing Global Responsibility: Comparative Analysis of Fairness in Energy Transition Between Developing and Developed Countries
Authors: Jihan Ahmad As-sya’bani; Muhammad Zubair Abbas; Alzobaer Alshaeki; Herena Torio
Year: 2025
Journal: Sustainability (MDPI)

Title: Hydrogen Sulfide Presence in Low-Pressure Biogas and Desulphurizer Performance Comparison Towards Its Development of International Standard
Authors: Bendjamin Benny Louhenapessy; Muhammad Haekal Habibie; Yosi Aristiawan; Jihan Ahmad As-sya’bani; Krisna Wijaya
Year: 2023
Journal: AIP Conference Proceedings – XVII Mexican Symposium on Medical Physics

Title: Kajian Mekanika Kuantum dalam Sistem Koordinat Toroidal
Authors: Jihan Ahmad As-sya’bani; Muhammad Farchani Rosyid; Muhammad Nur
Year: 2017
Journal/Source: Undergraduate Thesis, Universitas Gadjah Mada

Title: Assessing Global Responsibility: Comparative Analysis of Fairness in Energy Transition Between Developing and Developed Countries
Authors: Jihan Ahmad As-sya’bani
Year: 2025
Journal/Source: Preprints (MDPI)

Conclusion

Jihan Ahmad As-sya’bani presents an impressive blend of academic excellence, multidisciplinary research experience, and international engagement in renewable energy and sustainability. His contributions to biogas standardization, wind energy simulations, and policy-relevant projects highlight his commitment to advancing clean energy solutions. His leadership in community-based renewable energy projects, coupled with a strong academic foundation and international exposure, make him a deserving candidate for the Best Researcher Award. With his ongoing research trajectory and leadership potential, Jihan is well-positioned to become a future global leader in the field of sustainable energy research.