Mohsin Raza | Renewable Energy | Innovation Research Award

Dr. Mohsin Raza | Renewable Energy | Innovation Research Award

Post Doctoral Research Associate | University of Sharjah | United Arab Emirates

Dr. Mohsin Raza, Ph.D., is a distinguished researcher specializing in biomass valorization, bioenergy, green chemistry, and nanocellulose production. He is currently advancing research in sustainable material science and bio-based innovations as a Postdoctoral Research Associate at a leading research institute. His academic background and scientific expertise center on transforming agricultural and lignocellulosic wastes into high-value materials through green and energy-efficient processes. Dr. Raza’s work integrates biomass conversion technologies, lignin recovery, nanocellulose extraction, and bio-based thermal insulation development, emphasizing environmental sustainability and circular economy principles. His core research skills include thermochemical processing, biopolymer synthesis, pyrolysis kinetics, and the use of natural deep eutectic solvents for eco-friendly material synthesis. Highly skilled in advanced analytical techniques such as TGA, DSC, XRD, FTIR, GC-MS, SEM, and TEM, he also demonstrates excellence in intellectual property development, holding multiple granted U.S. patents and additional applications in the fields of biomass valorization and green solvent technologies. As a prolific author with extensive publications in high-impact Q1 journals from leading publishers, Dr. Raza’s research contributions have significantly advanced understanding in renewable energy systems, sustainable chemistry, and nanomaterial engineering. His work has been recognized through multiple innovation and sustainability awards, reflecting his leadership and creativity in promoting clean technologies. Through collaborative research and continuous innovation, Dr. Raza continues to shape the future of renewable materials and sustainable energy, contributing to global progress toward a circular bioeconomy, with a documented record of 994 citations, 28 publications, and an h-index of 14.

Profile: Google Scholar | Scopus | ORCID

Featured Publications

1. Inayat, A., & Raza, M. (2019). District cooling system via renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 107, 360–373. Cited by: 221

2. Raza, M., Abu-Jdayil, B., Al-Marzouqi, A. H., & Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats–Redfern method. Renewable Energy, 183, 67–77. Cited by: 161

3. Raza, M., Inayat, A., Ahmed, A., Jamil, F., Ghenai, C., Naqvi, S. R., Shanableh, A., & Park, Y. K. (2021). Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing. Sustainability, 13(19), 11061. Cited by: 148

4. Raza, M., Abu-Jdayil, B., Banat, F., & Al-Marzouqi, A. H. (2022). Isolation and characterization of cellulose nanocrystals from date palm waste. ACS Omega, 7(29), 25366–25379. Cited by: 102

5. Raza, M., & Abu-Jdayil, B. (2022). Cellulose nanocrystals from lignocellulosic feedstock: A review of production technology and surface chemistry modification. Cellulose, 29(2), 685–722. Cited by: 77

 

Ao Wang | Biomass | Best Researcher Award

Dr. Ao Wang | Biomass | Best Researcher Award

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry | China

Dr. Ao Wang is an Associate Research Fellow at the Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF) and currently serves as a visiting scholar at Nanyang Technological University, fostering international research collaborations. His professional expertise centers on the preparation and application of advanced functional carbon materials derived from biomass, with a particular focus on electrochemical energy storage. He has led major research projects, including national key programs and fundamental research initiatives at CAF. Dr. Wang’s contributions include elucidating the evolution mechanism of carbon microcrystals during lignin and cellulose pyrolysis, demonstrating that the isotropy of carbon crystal seeds drives the ordered growth of graphite-like microcrystals, and revealing the critical influence of catalyst-induced pore sizes on the formation of closed pore structures in energy storage carbon materials. He has published over 30 articles in high-impact journals such as Progress in Materials Science, Advanced Functional Materials, and Carbon Energy, and has been granted 8 invention patents. His research skills encompass biomass carbon material synthesis, catalytic carbonization, pore structure engineering, and electrochemical characterization for lithium-ion and sodium-ion batteries, as well as supercapacitors. Dr. Wang continues to advance the field of biomass-derived carbon materials for energy storage, demonstrating a strong commitment to sustainable energy solutions and functional material innovation, with a documented record of 1,899 citations, 99 documents, and an h-index of 24.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

Fan, M., Yuan, Q., Zhao, Y., Wang, Z., Wang, A., Liu, Y., Sun, K., Wu, J., Wang, L., … (2022). A facile “double‐catalysts” approach to directionally fabricate pyridinic N–B‐pair‐doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient … Advanced Materials, 34(13), 2107040. Cited by 163.

Fan, M., Wang, Z., Sun, K., Wang, A., Zhao, Y., Yuan, Q., Wang, R., Raj, J., Wu, J., … (2023). N–B–OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Advanced Materials, 35(17), 2209086. Cited by 150.

Wang, A., Sun, K., Xu, R., Sun, Y., Jiang, J. (2021). Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. Journal of Cleaner Production, 283, 125385. Cited by 118.

Chen, C., Sun, K., Huang, C., Yang, M., Fan, M., Wang, A., Zhang, G., Li, B., Jiang, J., … (2023). Investigation on the mechanism of structural reconstruction of biochars derived from lignin and cellulose during graphitization under high temperature. Biochar, 5(1), 51. Cited by 66.

Cao, M., Liu, Y., Sun, K., Li, H., Lin, X., Zhang, P., Zhou, L., Wang, A., Mehdi, S., … (2022). Coupling Fe3C nanoparticles and N‐doping on wood-derived carbon to construct reversible cathode for Zn–Air batteries. Small, 18(26), 2202014. Cited by 58.

 

Derese Kebede Teklie | Renewable Energy | Best Academic Researcher Award

Dr. Derese Kebede Teklie | Renewable Energy | Best Academic Researcher Award

Researcher | Istanbul Technical University | Ethiopia

Dr. Derese Kebede Teklie is an accomplished scholar in Development and Environmental Economics with a strong focus on the intersection of green economy, institutional quality, and sustainable development in Africa. Born on August 19, 1988, in Arsi, Ethiopia, he holds a Ph.D. in Economics from Istanbul Technical University, Turkey, under the supervision of Assoc. Prof. Dr. Mete Han Yağmur. He is also pursuing a second Ph.D. in Green Economy and Sustainability at Brescia University, Italy, expanding his expertise in environmental policy and sustainable growth. Dr. Teklie earned his M.Sc. in Development Economics from Debre Markos University, Ethiopia, and a B.A. in Economics from Mekelle University. His academic journey has been enhanced by international exposure through the Erasmus Exchange Program at Istanbul Kültür University, fostering global research collaboration and cross-cultural learning. Professionally, he serves as an Assistant Researcher at Istanbul Technical University, contributing to projects on Africa’s economic growth, environmental sustainability, and green innovation. Previously, he worked as a Lecturer at Rift Valley University, Ethiopia, and held key roles in NGO project coordination and government research institutes, demonstrating his versatility across academia, research, and community development. His research interests include environmental economics, green growth, renewable energy policy, institutional development, and econometric modeling. Dr. Teklie is skilled in advanced analytical tools such as STATA, SPSS, EViews, MATLAB, Python, and CGE modeling, reflecting his technical proficiency in empirical research. His publications in Sustainability and the International Journal of Energy Economics and Policy address pressing issues in Africa’s environmental and economic transformation. Recognized for his academic dedication and contributions to sustainable development, Dr. Teklie continues to advance impactful interdisciplinary research and international collaboration. Dr. Derese Kebede Teklie’s academic impact is reflected in his growing recognition with 19 citations, 3 documents, and an h-index of 2, highlighting his emerging influence in environmental and development economics research.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1. Teklie, D. K., & Yağmur, M. H. (2024). The Role of Green Innovation, Renewable Energy, and Institutional Quality in Promoting Green Growth: Evidence from African Countries. Sustainability, 16(14), 6166.

2. Teklie, D. K., & Yağmur, M. H. (2024). Effect of Economic Growth on CO₂ Emission in Africa: Do Financial Development and Globalization Matter? International Journal of Energy Economics and Policy, 14(1), 121–140.

3. Teklie, D. K., & Doğan, B. (2024). Analyzing the Dynamics: Asymmetric Effects of Economic Growth, Technological Innovation, and Renewable Energy on Carbon Emissions in Africa. International Journal of Energy Economics and Policy, 14(5), 509–519.

4. Teklie, D. K. (2021). Rural Household Poverty and Its Determining Factors: A Poverty Analysis Using Alternative Measurement Approaches. International Journal of Advanced Research.

Vahed Ghiasi | Renewable Energy | Pioneer Researcher Award

Assist. Prof. Dr. Vahed Ghiasi | Renewable Energy | Pioneer Researcher Award

Assistant Professor | Malayer university | Iran

Dr. Vahed Ghiasi is an accomplished civil and geotechnical engineer with a Ph.D. in Geotechnical and Geological Engineering from University Putra Malaysia (2012), where his research focused on the effects of weak rock geomechanical properties on tunnel stability. He currently serves as Assistant Professor at the Faculty of Civil and Architecture Engineering, Malayer University, Iran, with extensive experience in supervising graduate students, managing large-scale research projects, and contributing to both national and international engineering initiatives. His professional expertise encompasses tunnel engineering, soil-structure interaction, foundation engineering, advanced soil mechanics, and landslide hazard assessment, supported by practical work in seismic and earth dam engineering. Dr. Ghiasi has led numerous research projects, including international collaborations on landslide hazard mapping using neural networks and fuzzy logic, while publishing over 130 peer-reviewed articles in high-impact journals such as SN Applied Sciences, Results in Engineering, Geomechanics and Engineering, and Natural Hazards. He is also an active contributor to the global scientific community, serving on editorial boards for journals like SN Applied Sciences and Applied Engineering and Technology, and reviewing for more than 20 international journals. His research interests include geotechnical design, tunnel stability analysis, landslide risk assessment, soil improvement, and advanced numerical modeling techniques, utilizing software such as PLAXIS, PHASE 2 FEM, and FDM. Dr. Ghiasi’s professional involvement extends to memberships in prominent societies including SEAGS, IGS, ITA-AITES, ASCE, and IEM, and he has been recognized with awards such as the Most Outstanding Iranian Student in Malaysia (2011) and Superior Researcher of the Faculty of Civil Engineering, Malayer University (2019–2023). His work demonstrates a commitment to advancing geotechnical engineering knowledge, mentoring future engineers, and contributing to resilient infrastructure development. Dr. Ghiasi’s growing academic impact is reflected in 316 citations, 45 documents, and an h-index of 11, demonstrating his sustained influence in geotechnical engineering research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Safaei, M., Omar, H., Huat, B. K., Yousof, Z. B. M., & Ghiasi, V. (2011). Deterministic rainfall induced landslide approaches, advantage and limitation. Electronic Journal of Geotechnical Engineering, 16, 1619–1650. Cited by 47

2. Mafian, S., Huat, B. B. K., & Ghiasi, V. (2009). Evaluation on root theories and root strength properties in slope stability. European Journal of Scientific Research, 30(4), 594–607. Cited by 43

3. Ghiasi, V., & Koushki, M. (2020). Numerical and artificial neural network analyses of ground surface settlement of tunnel in saturated soil. SN Applied Sciences, 2(5), 939. Cited by 42

4. Kazemian, S., Prasad, A., Huat, B. B. K., Ghiasi, V., & Ghareh, S. (2012). Effects of cement–sodium silicate system grout on tropical organic soils. Arabian Journal for Science and Engineering, 37(8), 2137–2148. Cited by 38

5. Safaei, M., Omar, H., Yousof, Z. B. M., & Ghiasi, V. (2010). Applying geospatial technology to landslide susceptibility assessment. Electronic Journal of Geotechnical Engineering, 15(G), 677–696. Cited by 31