Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Dr. Mahdi Jahami | Green Hydrogen | Green Hydrogen Production Award

Professor | The University of Alabama | United States

Dr. Mahdi Jahami is a dedicated researcher in the Department of Mechanical Engineering, Tuscaloosa, United States, whose work focuses on renewable energy systems, sustainable hydrogen production, and life cycle assessment (LCA). His research aims to develop environmentally responsible energy conversion technologies by integrating renewable resources with innovative modeling and optimization frameworks. Dr. Jahami’s scholarly contributions emphasize reducing greenhouse gas emissions through cleaner production pathways and advancing the global transition toward a low-carbon, sustainable energy future. His notable publication, “Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s goals,” provides a comprehensive assessment of hydrogen generation via Steam Methane Reforming (SMR) and Electrified-SMR systems powered by renewable energy. The study delivers significant insights into optimizing hydrogen production efficiency while aligning with ambitious environmental and policy objectives. With 9 citations, 1 publication, and a Scopus h-index of 1, Dr. Jahami’s research demonstrates growing academic recognition and influence in the fields of clean energy and carbon mitigation. Through collaboration with international co-authors, he applies an interdisciplinary approach combining techno-economic analysis, emissions modeling, and renewable energy integration to design efficient, sustainable hydrogen systems. Beyond academic contributions, his work holds strong societal impact by supporting global initiatives for carbon neutrality, clean technology advancement, and sustainable industrial transformation. Through rigorous research and innovation, Dr. Jahami continues to contribute to the evolution of green engineering solutions, reinforcing the vital role of hydrogen technologies in achieving net-zero emissions and driving global energy sustainability.

Profiles: Scopus | ResearchGate | LinkedIn

Featured Publications

1. Jahami, M. (2025). Life cycle assessment of SMR and Electrified-SMR with renewable energy systems: Projecting emissions and optimizing hydrogen production for California’s 2035 goals. Renewable Energy. Cited by 9.

Dr. Mahdi Jahami’s research advances the global transition toward sustainable hydrogen production and renewable energy integration, providing innovative life cycle–based solutions that reduce emissions and support carbon-neutral industrial systems. His work bridges engineering innovation and environmental responsibility, driving progress toward a cleaner, more resilient energy future.

Jun Seo Kim | Nanotechnology for Renewable Energy | Best Researcher Award

Mr. Jun Seo Kim | Nanotechnology for Renewable Energy | Best Researcher Award

Graduate Researcher | Gachon University | South Korea

Mr. Jun Seo Kim is a Graduate Researcher at the Department of Materials Science and Engineering, Gachon University, South Korea, specializing in perovskite-based optoelectronic devices. He is currently pursuing a master’s degree with a focus on developing cesium-controlled triple-cation perovskite thin films for next-generation deep-ultraviolet (DUV) photodetectors. His professional experience includes extensive hands-on work in solution processing, thin-film deposition, and advanced characterization techniques such as XRD, UV–vis spectroscopy, and electrical performance measurements, which have enabled him to design and validate scalable processes for stable perovskite devices. His research interests include mixed-cation perovskite stability, photolithography-free patterning for UVC sensing applications, and improving material performance for industrial safety and optoelectronic applications. Mr. Jun Seo has authored an SCI-indexed journal article in MDPI Applied Sciences, demonstrating significant improvements in device stability and sensing performance through an innovative two-step post-treatment process. His ongoing project explores photolithography-free patterning techniques for perovskite thin films, aiming to simplify device fabrication and broaden practical applications. Although early in his academic career, Mr. Jun Seo has shown strong research potential by successfully bridging materials science and device engineering. He is actively preparing further publications, aiming for Q1-indexed journals and expanded international collaborations to enhance his global research impact. Awards and honors include recognition for his high-quality research contribution through acceptance in a reputable SCI journal at the master’s level, showcasing his commitment to advancing optoelectronics research. Mr. Jun Seo aspires to continue his academic journey toward a Ph.D., focusing on scalable perovskite device technologies, mentorship of junior researchers, and contributing to international conferences.

Profiles: Google Scholar | Scopus | ORCID

Featured Publication

1. Kim, J. S., Kim, S., & Choi, H. W. (2025). The effect of Cs-controlled triple-cation perovskite on improving the sensing performance of deep-ultraviolet photodetectors. Applied Sciences, 15(14), 7982.