Debajeet Bora | Green Hydrogen | Best Researcher Award

Assist. Prof. Dr. Debajeet Bora | Green Hydrogen | Best Researcher Award   

Assistant Professor HDR | Mohammed VI Polytechnic University (UM6P) | Morocco

Dr. Debajeet K. Bora is a distinguished researcher and Assistant Professor HDR at Mohammed VI Polytechnic University, Morocco, with extensive expertise in the synthesis and molecular understanding of metal oxides for solar energy conversion, electrocatalysis, artificial photosynthesis, hydrogen generation, and CO₂ reduction. He earned his Ph.D. in Nanosciences from the University of Basel, Switzerland in 2012 (Magna Cum Laude), completed his University Habilitation de Research in 2023 at Mohammed VI Polytechnic University on artificial photosynthesis and electrolyzer-based hydrogen production, and holds a M.Sc. in Nanoscience and Technology from Tezpur University, India. Dr. Bora’s professional experience spans leading research projects at ETH Zürich, Empa Swiss Federal Laboratories, Lawrence Berkeley National Laboratory, and Jain University, with significant international collaborations in Europe, the USA, and Morocco. His research interests focus on hybrid nanoarchitectures, surface functionalization, perovskite electrocatalysts, and pilot-scale renewable hydrogen and ammonia production. Dr. Bora has established and managed research groups, supervised Ph.D. and Master’s students, and successfully led high-impact projects including the ENSUS Core Grant (700K USD), Research Start Grants, and the Green Ammonia Vision Project (1.5M Euro), demonstrating strong leadership and mentorship skills. He is an active peer reviewer for leading journals, editorial board member of Scientific Reports, and member of professional societies including the American Chemical Society. His awards and honors include the EMPA Research Award 2013, recognition as a Top 3% Scientist in Nanoscience and Nanotechnology, and multiple international travel grants and media coverages highlighting his work in green hydrogen. Dr. Bora’s research achievements, global collaborations, and leadership in sustainable energy technologies underscore his impact on the scientific community and society. Dr. Bora’s academic impact is further reflected in his growing recognition with 1,175 citations, 43 documents, and an h-index of 17, demonstrating his influential role in advancing nanomaterials, renewable energy, and green hydrogen research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Bora, D. K., Braun, A., & Constable, E. C. (2013). “In rust we trust”. Hematite–the prospective inorganic backbone for artificial photosynthesis. Energy & Environmental Science, 6(2), 407–425.  (Cited by 262)

2. Braun, A., Sivula, K., Bora, D. K., Zhu, J., Zhang, L., Gratzel, M., Guo, J., … (2012). Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. The Journal of Physical Chemistry C, 116(32), 16870–16875.  (Cited by 183)

3. Bora, D. K., Braun, A., Erat, S., Safonova, O., Graule, T., & Constable, E. C. (2012). Evolution of structural properties of iron oxide nanoparticles during temperature treatment from 250 °C–900 °C: X-ray diffraction and Fe K-shell pre-edge X-ray absorption study. Current Applied Physics, 12(3), 817–825.  (Cited by 105)

4. Milewska, A., Świerczek, K., Toboła, J., Boudoire, F., Hu, Y., Bora, D. K., Mun, B. S., … (2014). The nature of the nonmetal-metal transition in LixCoO2 oxide. Solid State Ionics, 263, 110.  (Cited by 94)

5. Bora, D. K., Braun, A., Erni, R., Fortunato, G., Graule, T., & Constable, E. C. (2011). Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chemistry of Materials, 23(8), 2051–2061.  (Cited by 76)

 

Ming Fan | Hydropower | Best Researcher Award

Dr. Ming Fan | Hydropower | Best Researcher Award

Research Scientist | Oak Ridge National Laboratory | United States 

Dr. Ming Fan is a Research Scientist at Oak Ridge National Laboratory (ORNL), where he leads cutting-edge research at the intersection of computational science, machine learning, and sustainable energy systems. He earned his Ph.D. in Geoenergy Engineering from Virginia Tech, after completing an M.S. in Petroleum and Natural Gas Engineering at West Virginia University and a B.S. in Resources Exploration Engineering at the China University of Mining and Technology. Professionally, Dr. Fan has developed an impressive portfolio of research spanning machine learning, deep learning, explainable AI, uncertainty quantification, and energy system modeling, with applications in climate prediction, water resource management, CO₂ and hydrogen storage, and geothermal energy. His expertise lies in advancing both theory and practical applications, integrating data-driven models with large-scale simulations to address critical challenges in energy transition and climate science. His research skills include high-performance computing, uncertainty-aware modeling, advanced geoscientific simulations, and AI-enabled decision support, which he has demonstrated in projects funded by the U.S. Department of Energy. Dr. Fan’s professional contributions extend beyond research through his roles as an active reviewer for leading journals, guest editor, NSF proposal panelist, and session organizer at major conferences such as AGU, ICDM, NeurIPS, and ICLR. His achievements have earned him prestigious recognitions, including being a Finalist for the ACM Gordon Bell Climate Modeling Prize and receiving the HPCwire Top Supercomputing Achievement Award. These awards highlight his ability to push the boundaries of computational geoscience while making tangible impacts on real-world energy and climate challenges. Dr. Fan’s academic impact is further reflected in his growing recognition with 640 citations, 38 documents, and an h-index of 15, demonstrating his influential role in advancing computational science, energy systems modeling, and sustainable resource management.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Fan, M., McClure, J., Han, Y., Li, Z., & Chen, C. (2018). Interaction between proppant compaction and single-/multiphase flows in a hydraulic fracture. SPE Journal, 23(4), 1290–1303. Cited by: 67

2. Wang, H., Dalton, L., Fan, M., Guo, R., McClure, J., Crandall, D., & Chen, C. (2022). Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM. Journal of Petroleum Science and Engineering, 215, 110596. Cited by: 61

3. Guo, R., Dalton, L. E., Fan, M., McClure, J., Zeng, L., Crandall, D., & Chen, C. (2020). The role of the spatial heterogeneity and correlation length of surface wettability on two-phase flow in a CO₂-water-rock system. Advances in Water Resources, 146, 103763. Cited by: 60

4. Fan, M., McClure, J., Han, Y., Ripepi, N., Westman, E., Gu, M., & Chen, C. (2019). Using an experiment/simulation-integrated approach to investigate fracture-conductivity evolution and non-Darcy flow in a proppant-supported hydraulic fracture. SPE Journal, 24(4), 1912–1928. Cited by: 57

5. Fan, M., Li, Z., Han, Y., Teng, Y., & Chen, C. (2021). Experimental and numerical investigations of the role of proppant embedment on fracture conductivity in narrow fractures (includes associated errata). SPE Journal, 26(1), 324–341. Cited by: 50

 

You Qiang | Nanotechnology for Renewable Energy | Best Faculty Award

Prof. Dr. You Qiang | Nanotechnology for Renewable Energy | Best Faculty Award

Professor | University of Idaho | United States

Dr. You Qiang, a distinguished Professor of Physics at the University of Idaho, has dedicated over four decades to pioneering research in nanoparticles and nanomaterials, with a particular focus on nanoclusters, nanocomposites, and their magnetic, optical, and transport properties. He received his B.S. in Engineering Physics from Hefei University of Technology, China, an M.S. in Physics from Harbin Institute of Technology and the Chinese Academy of Space Technology, and his Ph.D. in Physics from the University of Freiburg, Germany. His professional journey includes significant roles as Research Scientist and Senior Scientist at the University of Freiburg, Research Assistant Professor at the University of Nebraska-Lincoln, and since 2002, a progressive career from Assistant to Full Professor at the University of Idaho, where he also holds an adjunct appointment in Nuclear Engineering. Dr. Qiang’s research interests lie in the synthesis and characterization of advanced nanomaterials and their application to nuclear energy, radiation detection, and radioactive waste separation, integrating fundamental physics with practical technological solutions. His research skills span experimental synthesis, advanced spectroscopy, ion irradiation studies, and nanoscale materials characterization, contributing to high-impact publications in JACS, Nanoscale, Environmental Science & Technology, Advanced Functional Materials, and Journal of Physical Chemistry C. Beyond his scholarly output, he has demonstrated strong leadership as President of the Idaho Academy of Science and Engineering, organizer and chair of multiple international conferences, and editorial board member for leading journals. His dedication to mentorship has been recognized with multiple Alumni Awards for Excellence in Graduate Student Mentorship, underscoring his commitment to training the next generation of scientists. Dr. Qiang’s academic impact is substantial, with his growing recognition reflected in 2,906 citations, 97 documents, and an h-index of 27, demonstrating his influential role in advancing nanomaterials and nuclear energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Haberland, H., Mall, M., Moseler, M., Qiang, Y., Reiners, T., & Thurner, Y. (1994). Filling of micron‐sized contact holes with copper by energetic cluster impact. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 12(5), 2925–2930. Cited by: 540

2. Wang, C. M., Baer, D. R., Thomas, L. E., Amonette, J. E., Antony, J., & Qiang, Y. (2005). Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. Journal of Applied Physics, 98(9), 094308. Cited by: 331

3. Wang, C., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 131(25), 8824–8832. Cited by: 290

4. Qiang, Y., Antony, J., Sharma, A., Nutting, J., Sikes, D., & Meyer, D. (2006). Iron/iron oxide core-shell nanoclusters for biomedical applications. Journal of Nanoparticle Research, 8(3), 489–496. Cited by: 262

5. Baer, D. R., Amonette, J. E., Engelhard, M. H., Gaspar, D. J., Karakoti, A. S., Kuchibhatla, S. V. N. T., & Qiang, Y. (2008). Characterization challenges for nanomaterials. Surface and Interface Analysis, 40(3–4), 529–537. Cited by: 189

Christian Idogho | Solar Energy | Best Researcher Award

Mr. Christian Idogho | Solar Energy | Best Researcher Award

Researcher | University of Vermont | United States

Mr. Christian Idogho is a Ph.D. Candidate in Materials Science at the University of Vermont, where he focuses on semiconductor thin-film growth, materials characterization, and renewable energy systems. He earned a Bachelor of Engineering in Mechanical Engineering from the University of Agriculture, Makurdi (2020) and a Diploma in Chemical Engineering from Auchi Polytechnic. His professional and research experience spans multiple institutions and international collaborations, including advanced thin-film deposition projects using CVD, sputtering, and pulsed-laser deposition, as well as in-situ X-ray scattering studies at Brookhaven National Laboratory. He has also contributed to renewable energy forecasting research using machine learning at the University of Nigeria, Nsukka, and held teaching assistantships at both the University of Vermont and Auchi Polytechnic, mentoring students in physics and core engineering subjects. His research interests include semiconductor thin-film growth, thermoelectric materials, machine learning for clean energy forecasting, renewable energy systems, and advanced materials characterization techniques such as XRD, SEM, AFM, and ellipsometry. Mr. Idogho’s research skills cover a wide spectrum, including COMSOL Multiphysics, MATLAB, Python, CAD tools (SolidWorks, Autodesk Inventor), and simulation of photovoltaic and thermoelectric systems. His awards and honors include the Best Researcher Award in Machine Learning (2025), Best Undergraduate Thesis Award (2020), and the Olive Real Estate Science and Engineering Scholarship. He is also an active reviewer for journals such as Energy Research and Clean Energy and maintains memberships in Sigma Xi, the Association for Iron & Steel Technology (AIST), Material Advantage, NSBE, and Black in AI. Mr. Idogho’s contributions through publications in Energy Science & Engineering, Energies, and Unconventional Resources underscore his growing reputation in clean energy and advanced materials. With his vision, technical expertise, and commitment to international collaboration, he is positioned to become a global leader in sustainable energy materials and semiconductor research. Mr. Idogho’s growing academic impact is reflected in 21 citations, 4 documents, and an h-index of 1, demonstrating his emerging influence in materials science and renewable energy research.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

1. Maduabuchi, C., Nsude, C., Eneh, C., Eke, E., Okoli, K., Okpara, E., & Idogho, C. (2023). Renewable energy potential estimation using climatic-weather-forecasting machine learning algorithms. Energies, 16(4), 1603. Cited by: 25

2. Onuh, P., Ejiga, J. O., Abah, E. O., Onuh, J. O., Idogho, C., & Omale, J. (2024). Challenges and opportunities in Nigeria’s renewable energy policy and legislation. World Journal of Advanced Research and Reviews, 23(2), 2354–2372.  Cited by: 15

3. Idoko, P. I., Ezeamii, G. C., Idogho, C., Peter, E., Obot, U. S., & Iguoba, V. A. (2024). Mathematical modeling and simulations using software like MATLAB, COMSOL and Python. Magna Scientia Advanced Research and Reviews, 12(2), 62–95. Cited by: 6

4. Maduabuchi, C., Nsude, C., Eneh, C., Eke, E., Okoli, K., Okpara, E., & Idogho, C. (2023). Renewable energy potential estimation using climatic-weather-forecasting machine learning algorithms. Energies, 16(4), 1603.  Cited by: 3

5. Idogho, C., Abah, E. O., Onuh, J. O., Harsito, C., Omenka, K., Samuel, A., Ejila, A., & Idoko, I. P. (2025). Machine learning-based solar photovoltaic power forecasting for Nigerian regions. Energy Science & Engineering, 13(4), 1922–1934. Cited by: 1

Vahed Ghiasi | Renewable Energy | Pioneer Researcher Award

Assist. Prof. Dr. Vahed Ghiasi | Renewable Energy | Pioneer Researcher Award

Assistant Professor | Malayer university | Iran

Dr. Vahed Ghiasi is an accomplished civil and geotechnical engineer with a Ph.D. in Geotechnical and Geological Engineering from University Putra Malaysia (2012), where his research focused on the effects of weak rock geomechanical properties on tunnel stability. He currently serves as Assistant Professor at the Faculty of Civil and Architecture Engineering, Malayer University, Iran, with extensive experience in supervising graduate students, managing large-scale research projects, and contributing to both national and international engineering initiatives. His professional expertise encompasses tunnel engineering, soil-structure interaction, foundation engineering, advanced soil mechanics, and landslide hazard assessment, supported by practical work in seismic and earth dam engineering. Dr. Ghiasi has led numerous research projects, including international collaborations on landslide hazard mapping using neural networks and fuzzy logic, while publishing over 130 peer-reviewed articles in high-impact journals such as SN Applied Sciences, Results in Engineering, Geomechanics and Engineering, and Natural Hazards. He is also an active contributor to the global scientific community, serving on editorial boards for journals like SN Applied Sciences and Applied Engineering and Technology, and reviewing for more than 20 international journals. His research interests include geotechnical design, tunnel stability analysis, landslide risk assessment, soil improvement, and advanced numerical modeling techniques, utilizing software such as PLAXIS, PHASE 2 FEM, and FDM. Dr. Ghiasi’s professional involvement extends to memberships in prominent societies including SEAGS, IGS, ITA-AITES, ASCE, and IEM, and he has been recognized with awards such as the Most Outstanding Iranian Student in Malaysia (2011) and Superior Researcher of the Faculty of Civil Engineering, Malayer University (2019–2023). His work demonstrates a commitment to advancing geotechnical engineering knowledge, mentoring future engineers, and contributing to resilient infrastructure development. Dr. Ghiasi’s growing academic impact is reflected in 316 citations, 45 documents, and an h-index of 11, demonstrating his sustained influence in geotechnical engineering research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Safaei, M., Omar, H., Huat, B. K., Yousof, Z. B. M., & Ghiasi, V. (2011). Deterministic rainfall induced landslide approaches, advantage and limitation. Electronic Journal of Geotechnical Engineering, 16, 1619–1650. Cited by 47

2. Mafian, S., Huat, B. B. K., & Ghiasi, V. (2009). Evaluation on root theories and root strength properties in slope stability. European Journal of Scientific Research, 30(4), 594–607. Cited by 43

3. Ghiasi, V., & Koushki, M. (2020). Numerical and artificial neural network analyses of ground surface settlement of tunnel in saturated soil. SN Applied Sciences, 2(5), 939. Cited by 42

4. Kazemian, S., Prasad, A., Huat, B. B. K., Ghiasi, V., & Ghareh, S. (2012). Effects of cement–sodium silicate system grout on tropical organic soils. Arabian Journal for Science and Engineering, 37(8), 2137–2148. Cited by 38

5. Safaei, M., Omar, H., Yousof, Z. B. M., & Ghiasi, V. (2010). Applying geospatial technology to landslide susceptibility assessment. Electronic Journal of Geotechnical Engineering, 15(G), 677–696. Cited by 31

 

Ahmet Elbir | Renewable Energy | Best Researcher Award

Dr. Ahmet Elbir | Renewable Energy | Best Researcher Award

Süleyman Demirel University | Turkey

Dr. Ahmet Elbır, Ph.D. in Energy Systems from Süleyman Demirel University (2021), is a distinguished academic and researcher specializing in thermodynamic systems, renewable energy, and sustainable energy optimization. His educational background includes multiple degrees in Mechanical Engineering and Energy Systems Engineering, culminating in advanced research on transcritical CO₂ heat pumps and ground-source heat pump thermodynamics. Professionally, he serves as a Lecturer at Süleyman Demirel University’s Renewable Energy Research Center (YEKARUM), contributing to national and international research projects, including biogas reactor design and hybrid energy storage systems. His research interests encompass energy and exergy analysis, thermodynamic cycle optimization (Kalina, ORC, Brayton, and Rankine cycles), AI-assisted energy modeling, phase-change materials for energy storage, and sustainable cooling and heating technologies. Dr. Elbır possesses strong research skills in experimental and theoretical thermodynamic analysis, Python and AI-based simulation, fuzzy logic modeling, energy system optimization, and environmental impact assessment of industrial processes. His extensive publication record includes articles in top-tier journals such as Applied Thermal Engineering, Journal of Building Engineering, Environmental Progress & Sustainable Energy, and multiple international conference proceedings, alongside chapters in scientific books on renewable energy and thermodynamic systems. He has also contributed to editorial work at YEKARUM and actively mentors students in energy research projects. Recognized for his scientific contributions, Dr. Elbır has received accolades for innovative approaches in energy efficiency and sustainable system design. His leadership in research, academic service, and community engagement underscores his commitment to advancing renewable energy solutions and mentoring the next generation of engineers. Dr. Elbır’s growing academic impact is reflected in 12 citations, 18 documents, and an h-index of 2, demonstrating his sustained influence in energy systems and renewable energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Akarslan, K. F., Elbır, A., & Şahin, M. E. (2023). Wool drying process in heat-pump-assisted dryer by fuzzy logic modelling. Thermal Science, 27(4 Part B), 3043–3050. Cited by 6

2. Öztürk, M., Elbır, A., & Özek, N. (2011). Akdeniz bölgesine gelen güneş radyasyonunun ekserji analizi. In Proc. 6th International Advanced Technologies Symposium (IATS’11). Cited by 6

3. Öztürk, M., Elbır, A., Özek, N., & Yakut, A. K. (2011). Güneş hidrojen üretim metotlarının incelenmesi. 6th International Advanced Technologies Symposium (IATS’11), 16–18. Cited by 5

4. Elbır, A. (2010). Toprak kaynaklı ısı pompasının termodinamik analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü. Cited by 5

5. Elbır, A., Kodaloğlu, F. A., Üçgül, İ., & Şahin, M. E. (2022). Thermodynamic analysis of refrigerants used in ORC-VCC combined power systems for low temperature heat sources. Thermal Science, 26(4 Part A), 2855–2863. Cited by 4

Jianhua Zhou | Solar Energy | Best Researcher Award

Prof. Dr. Jianhua Zhou | Solar Energy | Best Researcher Award

Professor | Guilin University of Electric Technology | China

Prof. Jianhua Zhou, a distinguished scholar in materials science and engineering, currently serves as a Professor at the School of Materials Science and Engineering, Guilin University of Electronic Technology. He earned his B.S. in Applied Electrochemistry, M.S. in Applied Chemistry, and Ph.D. in Materials Processing Engineering from Nanjing University of Aeronautics and Astronautics, followed by a postdoctoral fellowship at Nagoya University, Japan. His professional career includes roles as Assistant Professor at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Lecturer, Associate Professor, and now full Professor at Guilin University of Electronic Technology. Prof. Zhou’s primary research interests focus on solar steam generation, thermoelectric conversion materials, lithium-ion batteries, and photothermal–thermoelectric hybrid systems. His research skills span advanced materials design, interfacial regulation, nanostructure engineering, and the development of sustainable energy harvesting and water treatment systems. He has led and participated in multiple prestigious projects funded by the National Natural Science Foundation of China, the Guangxi Science Foundation for Distinguished Young Scholars, and other national programs, advancing fundamental understanding and applications in renewable energy. Prof. Zhou has published 107 SCI/Scopus-indexed papers in leading international journals and conferences, authored the book Fundamentals of Functional Materials and Devices, and holds 12 granted patents with 20 under review. He also serves on the editorial boards of Nano Materials Science, Green Carbon, and Eco Energy, and actively contributes to international collaborations, student mentorship, and professional platforms, demonstrating both academic leadership and community engagement. His contributions have been recognized through funded research awards and professional memberships, reflecting his commitment to advancing renewable energy technologies for global sustainability. Prof. Zhou’s growing academic impact is reflected in 4,039 citations, 122 documents, and an h-index of 35, demonstrating his significant and sustained influence in materials science and renewable energy research.

Profiles: Scopus | ORCID | ResearchGate 

Featured Publications

1. Zhou, J., et al. (2025). Solar-driven interfacial evaporation coupling with photo-Fenton of floating Prussian blue/polypyrrole/paper film for volatile organic compounds-containing wastewater treatment. Separation and Purification Technology. Citations: 5

2. Zhou, J., et al. (2025). High-performance NiCu hydroxide self-supported electrode as a bifunctional catalyst for AOR and OER. Battery Energy. Citations: 2

3. Zhou, J., et al. (2025). Photo-Fenton catalyst embedded in photothermal aerogel for efficient solar interfacial water evaporation and purification. Green Carbon. Citations: 13

4. Zhou, J., et al. (2025). Carbon–MoS₂ composite loaded in poly(vinyl alcohol)–chitosan aerogel as dual-functional photothermal material for efficient water evaporation and thermal storage under solar irradiation. ACS Applied Polymer Materials.

5. Zhou, J., et al. (2025). Multicolor electrochromic electrodes with infrared emittance modulation based on WO₃ photonic crystal. Journal of Physics D: Applied Physics.

 

Mehdi Safaei | Sustainable Energy | Renewable Energy Education Award

Assist. Prof. Dr. Mehdi Safaei | Sustainable Energy | Renewable Energy Education Award

Assistant Professor | Istanbul Gelişim University | Turkey

Dr. Mehdi Safaei is an accomplished scholar with over 12 years of teaching and research experience in Industrial Engineering, specializing in supply chain management, logistics optimization, and sustainable supply networks. He earned his Ph.D. in Industrial Engineering (Logistics and Supply Network) from the University of Bremen, Germany in 2014, graduating with magna cum laude distinction and a perfect GPA, supported by the prestigious IGS scholarship. He also holds an M.Sc. and B.Sc. in Industrial Engineering from Sharif University of Technology, Iran, where he ranked first in the highly competitive national entrance examination. Professionally, Dr. Safaei has served as Assistant Professor at Istanbul Gelisim University since 2019, leading TÜBİTAK-funded projects, publishing extensively, and supervising more than 400 undergraduate and 30 graduate theses. His previous roles include Assistant Professor at Razi Vaccine and Serum Research Institute, Lecturer at the University of Tehran and Al-Zahra University, and Research Assistant at BIBA-LogDynamic, Germany, where he received three Best Paper Awards. His research interests include dynamic supply network design, green supply chain management, machine learning in logistics, crisis management, and Industry 4.0 integration. He is skilled in supply chain modeling, project management, risk analysis, and quantitative research, with advanced expertise in simulation, ERP systems, and statistical analysis. A dedicated mentor and collaborator, he has translated key logistics texts, authored two books, and published 40+ journal and conference papers in reputed outlets such as IEEE, Elsevier, and Scopus-indexed journals. His professional affiliations include INFORMS, CSCMP, EurOMA, IISE, and IAENG, reflecting his active engagement with the global research community. Dr. Safaei’s outstanding achievements have earned him honors such as “Magna Cum Laude” recognition, national top rankings, and multiple international awards. Dr. Safaei’s growing academic impact is reflected in 132 citations, 17 documents, and an h-index of 7, demonstrating his significant and sustained influence in the field of industrial engineering and sustainable supply chain management.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Alsharif, A. H., Salleh, N. Z. M., Baharun, R. B., & Safaei, M. (2020). Neuromarketing approach: An overview and future research directions. Journal of Theoretical and Applied Information Technology, 98(7), 915–925. Cited by 65

2. Safari, Y., Abdollahi, S. A., Mahmoudi, M., Safaei, M., Taghinia, F., & Pasha, P. (2023). Numerical study of heat transfer of wavy channel supercritical CO2 PCHE with various channel geometries. International Journal of Thermofluids, 18, 100330. Cited by 32

3. Mosier, W., Elhadary, T., Elhaty, I. A. M., & Safaei, M. (2020). Crisis management and the impact of pandemics on religious tourism. Dublin Institute of Technology Conference Proceedings. Cited by 30

4. Safaei, M. (2014). An integrated multi-objective model for allocating the limited sources in a multiple multi-stage lean supply chain. Economic Modelling, 37, 224–237. Cited by 26

5. Safaei, M., & Thoben, K. D. (2014). Measuring and evaluating of the network type impact on time uncertainty in the supply networks with three nodes. Measurement, 56, 121–127. Cited by 20

Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Mr. Tesfa Nega Gesese | Bioenergy | Best Researcher Award

Lecturer and Bioenergy research group coordinator | Bahir Dar University | Ethiopia

Mr. Tesfa Nega Gesese is a Lecturer and Bioenergy Research Group Coordinator at Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia, with over seven years of teaching and research experience. He holds an M.Sc. in Chemical Engineering and has built a strong academic foundation in renewable energy, waste valorisation, and greenhouse gas mitigation. His professional experience includes serving as a lecturer, course chair, and project leader, where he has coordinated large-scale research initiatives such as the mega project on integrated production of bioethanol, bio-hydrogen, and biogas from sesame stalk feedstock, as well as thematic research on computational modelling of anaerobic digestion and photosynthetic algae integration. His research interests span biomass valorisation, biofuels, pyrolysis, gasification, bio-composite materials, and sustainable energy systems. He has demonstrated advanced research skills in biomass pyrolysis kinetics, waste-to-energy conversion, and the development of renewable energy pathways tailored to local resources. Mr. Tesfa has authored and co-authored more than 15 peer-reviewed publications indexed in Scopus and Web of Science, focusing on biomass conversion technologies, bio-based materials, and environmental sustainability. His leadership role as a bioenergy research coordinator has enabled him to foster collaborative research, mentor young scholars, and deliver impactful solutions addressing Ethiopia’s energy challenges. He has also contributed to the scientific community as a reviewer for international journals and as a member of the Society of Ethiopian Chemical Engineers. His dedication to research excellence has earned recognition through funded research projects and academic achievements that align with global sustainability goals. Overall, Mr. Tesfa is committed to advancing bioenergy innovation, expanding international collaborations, and influencing policy toward clean energy transitions. Mr. Tesfa Nega Gesese’s growing academic impact is reflected in 26 citations, 10 documents, and an h-index of 3, demonstrating his emerging influence in the field of bioenergy and sustainable engineering.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

1. Mersha, D. A., Gesese, T. N., Sendekie, Z. B., Admase, A. T., & Bezie, A. J. (2024). Operating conditions, products and sustainable recycling routes of aminolysis of polyethylene terephthalate (PET)–A review. Polymer Bulletin, 81(13), 11563–11579. Cited by: 20

2. Bantie, Z., Tezera, A., Abera, D., & Nega, T. (2024). Nanoclays as fillers for performance enhancement in building and construction industries: State of the art and future trends. In Developments in Clay Science and Construction Techniques. Cited by: 11

3. Gesese, T. N., Fanta, S. W., Mersha, D. A., & Satheesh, N. (2022). Physical properties and antibacterial activity of cotton fabric treated with methanolic extracts of Solanum incanum fruits and red onion peels. The Journal of The Textile Institute, 113(2), 292–302. Cited by: 6

4. Gesese, T. N., Getahun, E., & Getahun, A. A. (2024). Investigation of thermal degradation properties and chemical kinetic characteristics of biomass pyrolysis via TG/DTG and FTIR techniques: Sesame stalks as a potential source. International Journal of Energy Research, 2024(1), 8891126. Cited by: 4

5. Gesese, T. N., Getahun, E., & Getahun, A. A. (2025). Pyrolysis kinetics, thermodynamics, and reaction performance of wheat straw and water hyacinth using TGA‐DTG analysis: Bioenergy potential in Ethiopia. Biofuels, Bioproducts and Biorefining, 19(3), 705–729.  Cited by: 2

 

Valeria Cafaro | Bioenergy | Best Researcher Award

Dr. Valeria Cafaro | Bioenergy | Best Researcher Award

Post – Doc researcher | National Research Council of Italy – Institute of BioEconomy| Italy

Dr. Valeria Cafaro is a dedicated Post-Doctoral Researcher at the National Research Council of Italy – Institute of BioEconomy (CNR–IBE), Catania, Sicily, specializing in crop physiology, sustainable agronomic practices, and genetic improvement of Mediterranean crops under abiotic stress. She holds a Ph.D. in Agricultural, Food, and Environmental Science (Doctor Europaeus, University of Catania), where her research focused on strategies to improve crop resilience and productivity under challenging climate conditions. Professionally, she contributes to the Agritech PNRR project on tomato adaptation to climate change and collaborates on research initiatives including Multicanapa and Ricinolio. Her research interests encompass plant adaptation to drought, salinity, and climate variability, seed biology, sowing optimization, and integrating molecular tools with field experimentation to improve yield, quality, and nutraceutical properties. Dr. Cafaro’s research skills include advanced plant phenotyping, statistical data analysis, experimental design, and development of sustainable crop management protocols. She has authored 11 peer-reviewed articles in Scopus/WoS-indexed journals, with one under review, and presented over 20 contributions at international conferences such as SIA, SOI, EUBCE, and ISHS, earning multiple awards for excellence in plant physiology and agronomy research. She serves as Guest Editor for Horticulturae (Special Issue: “Seed Biology in Horticulture: From Dormancy to Germination”) and peer reviewer for reputed journals including Agronomy, Plants, and International Journal of Molecular Sciences. Professionally, she is a member of the Società Italiana di Agronomia (SIA) and holds formal qualifications as Agronomist and Biologist. Dr. Cafaro’s growing academic impact is reflected in 59 citations, 15 documents, and an h-index of 5, demonstrating her significant and sustained influence in the field of crop physiology and climate-resilient agriculture.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn 

Featured Publications

1. Badagliacca, G., Testa, G., La Malfa, S. G., Cafaro, V., Lo Presti, E., & Monti, M. (2024). Organic fertilizers and bio-waste for sustainable soil management to support crops and control greenhouse gas emissions in Mediterranean agroecosystems: A review. Horticulturae, 10(5), 427. Cited by: 28

2. Arlotta, C., Ciacciulli, A., Strano, M. C., Cafaro, V., Salonia, F., Caruso, P., & Others. (2020). Disease resistant citrus breeding using newly developed high resolution melting and CAPS protocols for Alternaria brown spot marker assisted selection. Agronomy, 10(9), 1368. Cited by: 24

3. Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Germination response of different castor bean genotypes to temperature for early and late sowing adaptation in the Mediterranean regions. Agriculture, 13(8), 1569. Cited by: 12

4. Lippolis, A., Gezan, S. A., Zuidgeest, J., Cafaro, V., van Dinter, B. J., Elzes, G., & Others. (2025). Targeted genotyping (90K-SPET) facilitates genome-wide association studies and the prediction of yield-related traits in faba bean (Vicia faba L.). BMC Plant Biology, 25(1), 558. Cited by: 3

5. Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Assessment of germination response to salinity stress in castor through the hydrotime model. Agronomy, 13(11), 2783. 
Cited by: 6