Mohsin Raza | Renewable Energy | Innovation Research Award

Dr. Mohsin Raza | Renewable Energy | Innovation Research Award

Post Doctoral Research Associate | University of Sharjah | United Arab Emirates

Dr. Mohsin Raza, Ph.D., is a distinguished researcher specializing in biomass valorization, bioenergy, green chemistry, and nanocellulose production. He is currently advancing research in sustainable material science and bio-based innovations as a Postdoctoral Research Associate at a leading research institute. His academic background and scientific expertise center on transforming agricultural and lignocellulosic wastes into high-value materials through green and energy-efficient processes. Dr. Raza’s work integrates biomass conversion technologies, lignin recovery, nanocellulose extraction, and bio-based thermal insulation development, emphasizing environmental sustainability and circular economy principles. His core research skills include thermochemical processing, biopolymer synthesis, pyrolysis kinetics, and the use of natural deep eutectic solvents for eco-friendly material synthesis. Highly skilled in advanced analytical techniques such as TGA, DSC, XRD, FTIR, GC-MS, SEM, and TEM, he also demonstrates excellence in intellectual property development, holding multiple granted U.S. patents and additional applications in the fields of biomass valorization and green solvent technologies. As a prolific author with extensive publications in high-impact Q1 journals from leading publishers, Dr. Raza’s research contributions have significantly advanced understanding in renewable energy systems, sustainable chemistry, and nanomaterial engineering. His work has been recognized through multiple innovation and sustainability awards, reflecting his leadership and creativity in promoting clean technologies. Through collaborative research and continuous innovation, Dr. Raza continues to shape the future of renewable materials and sustainable energy, contributing to global progress toward a circular bioeconomy, with a documented record of 994 citations, 28 publications, and an h-index of 14.

Profile: Google Scholar | Scopus | ORCID

Featured Publications

1. Inayat, A., & Raza, M. (2019). District cooling system via renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 107, 360–373. Cited by: 221

2. Raza, M., Abu-Jdayil, B., Al-Marzouqi, A. H., & Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats–Redfern method. Renewable Energy, 183, 67–77. Cited by: 161

3. Raza, M., Inayat, A., Ahmed, A., Jamil, F., Ghenai, C., Naqvi, S. R., Shanableh, A., & Park, Y. K. (2021). Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing. Sustainability, 13(19), 11061. Cited by: 148

4. Raza, M., Abu-Jdayil, B., Banat, F., & Al-Marzouqi, A. H. (2022). Isolation and characterization of cellulose nanocrystals from date palm waste. ACS Omega, 7(29), 25366–25379. Cited by: 102

5. Raza, M., & Abu-Jdayil, B. (2022). Cellulose nanocrystals from lignocellulosic feedstock: A review of production technology and surface chemistry modification. Cellulose, 29(2), 685–722. Cited by: 77

 

Debajeet Bora | Green Hydrogen | Best Researcher Award

Assist. Prof. Dr. Debajeet Bora | Green Hydrogen | Best Researcher Award   

Assistant Professor HDR | Mohammed VI Polytechnic University (UM6P) | Morocco

Dr. Debajeet K. Bora is a distinguished researcher and Assistant Professor HDR at Mohammed VI Polytechnic University, Morocco, with extensive expertise in the synthesis and molecular understanding of metal oxides for solar energy conversion, electrocatalysis, artificial photosynthesis, hydrogen generation, and CO₂ reduction. He earned his Ph.D. in Nanosciences from the University of Basel, Switzerland in 2012 (Magna Cum Laude), completed his University Habilitation de Research in 2023 at Mohammed VI Polytechnic University on artificial photosynthesis and electrolyzer-based hydrogen production, and holds a M.Sc. in Nanoscience and Technology from Tezpur University, India. Dr. Bora’s professional experience spans leading research projects at ETH Zürich, Empa Swiss Federal Laboratories, Lawrence Berkeley National Laboratory, and Jain University, with significant international collaborations in Europe, the USA, and Morocco. His research interests focus on hybrid nanoarchitectures, surface functionalization, perovskite electrocatalysts, and pilot-scale renewable hydrogen and ammonia production. Dr. Bora has established and managed research groups, supervised Ph.D. and Master’s students, and successfully led high-impact projects including the ENSUS Core Grant (700K USD), Research Start Grants, and the Green Ammonia Vision Project (1.5M Euro), demonstrating strong leadership and mentorship skills. He is an active peer reviewer for leading journals, editorial board member of Scientific Reports, and member of professional societies including the American Chemical Society. His awards and honors include the EMPA Research Award 2013, recognition as a Top 3% Scientist in Nanoscience and Nanotechnology, and multiple international travel grants and media coverages highlighting his work in green hydrogen. Dr. Bora’s research achievements, global collaborations, and leadership in sustainable energy technologies underscore his impact on the scientific community and society. Dr. Bora’s academic impact is further reflected in his growing recognition with 1,175 citations, 43 documents, and an h-index of 17, demonstrating his influential role in advancing nanomaterials, renewable energy, and green hydrogen research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Bora, D. K., Braun, A., & Constable, E. C. (2013). “In rust we trust”. Hematite–the prospective inorganic backbone for artificial photosynthesis. Energy & Environmental Science, 6(2), 407–425.  (Cited by 262)

2. Braun, A., Sivula, K., Bora, D. K., Zhu, J., Zhang, L., Gratzel, M., Guo, J., … (2012). Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. The Journal of Physical Chemistry C, 116(32), 16870–16875.  (Cited by 183)

3. Bora, D. K., Braun, A., Erat, S., Safonova, O., Graule, T., & Constable, E. C. (2012). Evolution of structural properties of iron oxide nanoparticles during temperature treatment from 250 °C–900 °C: X-ray diffraction and Fe K-shell pre-edge X-ray absorption study. Current Applied Physics, 12(3), 817–825.  (Cited by 105)

4. Milewska, A., Świerczek, K., Toboła, J., Boudoire, F., Hu, Y., Bora, D. K., Mun, B. S., … (2014). The nature of the nonmetal-metal transition in LixCoO2 oxide. Solid State Ionics, 263, 110.  (Cited by 94)

5. Bora, D. K., Braun, A., Erni, R., Fortunato, G., Graule, T., & Constable, E. C. (2011). Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chemistry of Materials, 23(8), 2051–2061.  (Cited by 76)

 

You Qiang | Nanotechnology for Renewable Energy | Best Faculty Award

Prof. Dr. You Qiang | Nanotechnology for Renewable Energy | Best Faculty Award

Professor | University of Idaho | United States

Dr. You Qiang, a distinguished Professor of Physics at the University of Idaho, has dedicated over four decades to pioneering research in nanoparticles and nanomaterials, with a particular focus on nanoclusters, nanocomposites, and their magnetic, optical, and transport properties. He received his B.S. in Engineering Physics from Hefei University of Technology, China, an M.S. in Physics from Harbin Institute of Technology and the Chinese Academy of Space Technology, and his Ph.D. in Physics from the University of Freiburg, Germany. His professional journey includes significant roles as Research Scientist and Senior Scientist at the University of Freiburg, Research Assistant Professor at the University of Nebraska-Lincoln, and since 2002, a progressive career from Assistant to Full Professor at the University of Idaho, where he also holds an adjunct appointment in Nuclear Engineering. Dr. Qiang’s research interests lie in the synthesis and characterization of advanced nanomaterials and their application to nuclear energy, radiation detection, and radioactive waste separation, integrating fundamental physics with practical technological solutions. His research skills span experimental synthesis, advanced spectroscopy, ion irradiation studies, and nanoscale materials characterization, contributing to high-impact publications in JACS, Nanoscale, Environmental Science & Technology, Advanced Functional Materials, and Journal of Physical Chemistry C. Beyond his scholarly output, he has demonstrated strong leadership as President of the Idaho Academy of Science and Engineering, organizer and chair of multiple international conferences, and editorial board member for leading journals. His dedication to mentorship has been recognized with multiple Alumni Awards for Excellence in Graduate Student Mentorship, underscoring his commitment to training the next generation of scientists. Dr. Qiang’s academic impact is substantial, with his growing recognition reflected in 2,906 citations, 97 documents, and an h-index of 27, demonstrating his influential role in advancing nanomaterials and nuclear energy research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

1. Haberland, H., Mall, M., Moseler, M., Qiang, Y., Reiners, T., & Thurner, Y. (1994). Filling of micron‐sized contact holes with copper by energetic cluster impact. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 12(5), 2925–2930. Cited by: 540

2. Wang, C. M., Baer, D. R., Thomas, L. E., Amonette, J. E., Antony, J., & Qiang, Y. (2005). Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. Journal of Applied Physics, 98(9), 094308. Cited by: 331

3. Wang, C., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 131(25), 8824–8832. Cited by: 290

4. Qiang, Y., Antony, J., Sharma, A., Nutting, J., Sikes, D., & Meyer, D. (2006). Iron/iron oxide core-shell nanoclusters for biomedical applications. Journal of Nanoparticle Research, 8(3), 489–496. Cited by: 262

5. Baer, D. R., Amonette, J. E., Engelhard, M. H., Gaspar, D. J., Karakoti, A. S., Kuchibhatla, S. V. N. T., & Qiang, Y. (2008). Characterization challenges for nanomaterials. Surface and Interface Analysis, 40(3–4), 529–537. Cited by: 189

Jianhua Zhou | Solar Energy | Best Researcher Award

Prof. Dr. Jianhua Zhou | Solar Energy | Best Researcher Award

Professor | Guilin University of Electric Technology | China

Prof. Jianhua Zhou, a distinguished scholar in materials science and engineering, currently serves as a Professor at the School of Materials Science and Engineering, Guilin University of Electronic Technology. He earned his B.S. in Applied Electrochemistry, M.S. in Applied Chemistry, and Ph.D. in Materials Processing Engineering from Nanjing University of Aeronautics and Astronautics, followed by a postdoctoral fellowship at Nagoya University, Japan. His professional career includes roles as Assistant Professor at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Lecturer, Associate Professor, and now full Professor at Guilin University of Electronic Technology. Prof. Zhou’s primary research interests focus on solar steam generation, thermoelectric conversion materials, lithium-ion batteries, and photothermal–thermoelectric hybrid systems. His research skills span advanced materials design, interfacial regulation, nanostructure engineering, and the development of sustainable energy harvesting and water treatment systems. He has led and participated in multiple prestigious projects funded by the National Natural Science Foundation of China, the Guangxi Science Foundation for Distinguished Young Scholars, and other national programs, advancing fundamental understanding and applications in renewable energy. Prof. Zhou has published 107 SCI/Scopus-indexed papers in leading international journals and conferences, authored the book Fundamentals of Functional Materials and Devices, and holds 12 granted patents with 20 under review. He also serves on the editorial boards of Nano Materials Science, Green Carbon, and Eco Energy, and actively contributes to international collaborations, student mentorship, and professional platforms, demonstrating both academic leadership and community engagement. His contributions have been recognized through funded research awards and professional memberships, reflecting his commitment to advancing renewable energy technologies for global sustainability. Prof. Zhou’s growing academic impact is reflected in 4,039 citations, 122 documents, and an h-index of 35, demonstrating his significant and sustained influence in materials science and renewable energy research.

Profiles: Scopus | ORCID | ResearchGate 

Featured Publications

1. Zhou, J., et al. (2025). Solar-driven interfacial evaporation coupling with photo-Fenton of floating Prussian blue/polypyrrole/paper film for volatile organic compounds-containing wastewater treatment. Separation and Purification Technology. Citations: 5

2. Zhou, J., et al. (2025). High-performance NiCu hydroxide self-supported electrode as a bifunctional catalyst for AOR and OER. Battery Energy. Citations: 2

3. Zhou, J., et al. (2025). Photo-Fenton catalyst embedded in photothermal aerogel for efficient solar interfacial water evaporation and purification. Green Carbon. Citations: 13

4. Zhou, J., et al. (2025). Carbon–MoS₂ composite loaded in poly(vinyl alcohol)–chitosan aerogel as dual-functional photothermal material for efficient water evaporation and thermal storage under solar irradiation. ACS Applied Polymer Materials.

5. Zhou, J., et al. (2025). Multicolor electrochromic electrodes with infrared emittance modulation based on WO₃ photonic crystal. Journal of Physics D: Applied Physics.

 

Renjith Krishnan | Bioenergy | Young Researcher Award

Dr. Renjith Krishnan | Bioenergy | Young Researcher Award   

R&D Engineer | Nasser S. Al Hajri Corporation | United Arab Emirates

Dr. Renjith Krishnan is a distinguished mechanical engineer and educator with nearly a decade of experience in science and engineering, specializing in sustainable energy, waste management, biofuel production, lithium-ion batteries, and Industry 5.0 applications. He earned his Ph.D. in Mechanical Engineering from the National Institute of Technology Mizoram, India (2022), with a thesis on the production, characterization, and testing of bamboo biodiesel in a variable compression ratio engine. He also holds an M.Tech in Computer Integrated Manufacturing from the University of Calicut (2015) and a B.Tech in Mechanical Engineering from the University of Kerala (2013). Dr. Krishnan has served in multiple academic and industry roles, including Assistant Professor positions at Saveetha Engineering College, Madanapalle Institute of Technology & Science, and SHM Engineering College, as well as R&D Piping Engineer at Nasser S. Al Hajri Corporation, UAE. His research interests encompass biofuels, biomass gasification, lithium extraction, machine learning for sustainability, and clean energy systems. He possesses strong research skills in experimental design, process optimization, computational modeling, and data analysis using tools such as Ansys, SolidWorks, Origin, and Python. Dr. Krishnan has an impressive publication record, including Q1 and Q2 journals such as Cleaner Engineering and Technology, Energy Science & Engineering, and Environmental Science and Pollution Research, along with 14 patents in areas ranging from water flow measurement to portable air purifiers. He actively contributes to professional communities as a member of the World Society of Sustainable Energy Technologies and AICTSD and has completed certifications in AI, Python, and Product Management. Dr. Krishnan is committed to mentoring students and fostering innovation in academia and industry. He is the recipient of multiple recognitions for his teaching and research. His growing academic impact is reflected in 80 citations, 9 documents, and an h-index of 4, demonstrating his significant and sustained influence in the field of sustainable energy and mechanical engineering.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

1. Krishnan, R., & Gopan, G. (2024). A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Cleaner Engineering and Technology, 20, 100749. Cited by: 64

2. Krishnan, R., Hauchhum, L., Gupta, R., & Pattanayak, S. (2018). Prediction of equations for higher heating values of biomass using proximate and ultimate analysis. In 2nd International Conference on Power, Energy and Environment: Towards Smart Technology. IEEE.  Cited by: 28

3. Gopan, G., Hauchhum, L., Pattanayak, S., Kalita, P., & Krishnan, R. (2022). Prediction of species concentration in syngas produced through gasification of different bamboo biomasses: A numerical approach. International Journal of Energy and Environmental Engineering, 13(4), 1383–1394. Cited by: 9

4. Krishnan, R., Hauchhum, L., Gupta, R., & Gopan, G. (2022). Production and characterisation of biodiesel extracted from Indian bamboos. International Journal of Oil, Gas and Coal Technology, 31(3), 316–331. Cited by: 6

5. Gopan, G., Hauchhum, L., Kalita, P., Krishnan, R., & Pattanayak, S. (2021). Parametric study of tapered fluidized bed reactor under varied taper angle using TFM. AIP Conference Proceedings, 2396(1), 020020. Cited by: 4

 

Jun Seo Kim | Nanotechnology for Renewable Energy | Best Researcher Award

Mr. Jun Seo Kim | Nanotechnology for Renewable Energy | Best Researcher Award

Graduate Researcher | Gachon University | South Korea

Mr. Jun Seo Kim is a Graduate Researcher at the Department of Materials Science and Engineering, Gachon University, South Korea, specializing in perovskite-based optoelectronic devices. He is currently pursuing a master’s degree with a focus on developing cesium-controlled triple-cation perovskite thin films for next-generation deep-ultraviolet (DUV) photodetectors. His professional experience includes extensive hands-on work in solution processing, thin-film deposition, and advanced characterization techniques such as XRD, UV–vis spectroscopy, and electrical performance measurements, which have enabled him to design and validate scalable processes for stable perovskite devices. His research interests include mixed-cation perovskite stability, photolithography-free patterning for UVC sensing applications, and improving material performance for industrial safety and optoelectronic applications. Mr. Jun Seo has authored an SCI-indexed journal article in MDPI Applied Sciences, demonstrating significant improvements in device stability and sensing performance through an innovative two-step post-treatment process. His ongoing project explores photolithography-free patterning techniques for perovskite thin films, aiming to simplify device fabrication and broaden practical applications. Although early in his academic career, Mr. Jun Seo has shown strong research potential by successfully bridging materials science and device engineering. He is actively preparing further publications, aiming for Q1-indexed journals and expanded international collaborations to enhance his global research impact. Awards and honors include recognition for his high-quality research contribution through acceptance in a reputable SCI journal at the master’s level, showcasing his commitment to advancing optoelectronics research. Mr. Jun Seo aspires to continue his academic journey toward a Ph.D., focusing on scalable perovskite device technologies, mentorship of junior researchers, and contributing to international conferences.

Profiles: Google Scholar | Scopus | ORCID

Featured Publication

1. Kim, J. S., Kim, S., & Choi, H. W. (2025). The effect of Cs-controlled triple-cation perovskite on improving the sensing performance of deep-ultraviolet photodetectors. Applied Sciences, 15(14), 7982.

Bawoke Mekuye Getnet | Nanotechnology for Renewable Energy | Best Researcher Award

Mr. Bawoke Mekuye Getnet | Nanotechnology for Renewable Energy | Best Researcher Award

Lecturer | Mekdela Amba University | Ethiopia

Dr. Bawoke Mekuye Getnet is an Ethiopian physicist, lecturer, and researcher known for his impactful contributions to condensed matter physics, nanoscience, nanomaterials, and diluted magnetic semiconductors (DMS). He holds a B.Sc. in Physics from Dilla University and an M.Sc. in Physics from Debre Markos University, building a strong foundation in theoretical and computational physics. He serves as Lecturer and Coordinator of the College of Natural and Computational Sciences at Mekdela Amba University, where he leads academic coordination and teaches undergraduate and postgraduate students, drawing on earlier experience as a secondary school physics teacher that shaped his passion for inspiring future scientists. His research spans computational modeling of high Curie temperature in ferromagnetic semiconductors, size-dependent optical properties of nanomaterials, energy system dynamics, and antibacterial mechanisms of metallic nanoparticles, supported by expertise in Python, MATLAB, dielectric function analysis, nanomaterial simulations, scientific writing, and peer review. Dr. Bawoke has published in leading journals such as Nano Select, Frontiers in Physics, Energy Science & Engineering, Advances in Condensed Matter Physics, and IET Nanobiotechnology, contributed book chapters and systematic reviews, and serves as a peer reviewer for prominent journals including ACS Omega and Solid State Communications. Beyond research, he has conducted teacher training programs, delivered software workshops for physics graduates, and presented at major conferences on computational investigations of ferromagnetic semiconductors. His honors include the prestigious Best Researcher Award (International Top Research Award) in recognition of his commitment to advancing physics research and education. Dedicated to promoting innovation, knowledge sharing, and capacity building in Ethiopia and beyond, Dr. Bawoke aspires to expand Q1 journal publications, foster global research collaborations, and engage as a keynote speaker and editorial board member, positioning him to play a transformative role in nanotechnology, semiconductor physics, and energy research while inspiring future generations of researchers.

Profile: Google Scholar | Scopus Profile | ORCID Profile

Featured Publications

Mekuye, B., & Abera, B. (2023). Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select, 4(8), 486–501. Cited by: 501

Mekuye, B. (2023). The impact of size on the optical properties of silver nanoparticles based on dielectric function. Nanotechnology and Nanomaterials Annual Volume 2024. Cited by: 18

Girma, A., Abera, B., Mekuye, B., & Mebratie, G. (2024). Antibacterial activity and mechanisms of action of inorganic nanoparticles against foodborne bacterial pathogens: A systematic review. IET Nanobiotechnology, 2024(1), 5417924. Cited by: 14

Girma, A., Alamnie, G., Bekele, T., Mebratie, G., Mekuye, B., & Abera, B., et al. (2024). Green-synthesised silver nanoparticles: Antibacterial activity and alternative mechanisms of action to combat multidrug-resistant bacterial pathogens: A systematic literature review. Green Chemistry Letters and Reviews, 17(1), 2412601. Cited by: 10

Girma, A., Mebratie, G., Mekuye, B., Abera, B., Bekele, T., & Alamnie, G. (2024). Antibacterial capabilities of metallic nanoparticles and influencing factors. Nano Select, 5(12), e202400049. Cited by: 9

Mojtaba Alirahmi | Renewable Energy Systems | Best Researcher Award

Dr. Mojtaba Alirahmi | Renewable Energy Systems | Best Researcher Award

Postdoctoral at Aalborg University | Denmark

Dr. Mojtaba Alirahmi is a distinguished researcher and process engineer recognized among the leading scientists in sustainable energy systems. His expertise spans operational research, energy system modeling, bioenergy, electrolysis, CCUS, and Power-to-X technologies, with a strong focus on practical solutions for decarbonization. He has contributed significantly to plant-wide process modeling, dynamic simulation, multivariable control, and techno-economic analysis of green fuel production, including hydrogen, methane, and ammonia. As a globally acknowledged scholar, he has established a reputation for excellence in mathematical optimization and interdisciplinary collaboration. His work bridges theory and application, demonstrating how advanced simulation, optimization, and system integration can drive innovation in renewable energy and carbon management. With an impressive publication record, active participation in international research projects, and mentorship of students, Dr. Alirahmi continues to influence both academia and industry. His career reflects a balance of scientific discovery, applied engineering, and dedication to building a sustainable energy future.

Professional Profiles

Google Scholar | Scopus Profile | ORCID Profile 

Education

Dr. Mojtaba Alirahmi pursued his Ph.D. in Chemical Engineering at Aalborg University, where his research focused on renewable energy integration, carbon capture, utilization and storage, and Power-to-X pathways. His doctoral studies involved developing advanced models for system optimization, thermal management, and sustainable fuel production, contributing new methods to energy efficiency research. His academic journey began with a Master’s degree in Mechanical Engineering, where he specialized in solar energy applications, multi-generation systems, and exergo-economic assessments. This strong foundation enabled him to apply both mechanical and chemical engineering principles to renewable energy challenges. Throughout his academic training, he engaged in advanced computational modeling, multi-objective optimization, and comparative analyses of energy systems. His education has been marked by innovation, a drive for solving global energy issues, and a continuous pursuit of excellence. The combination of theoretical knowledge and applied research has equipped him with the skills and insights to address pressing challenges in sustainable energy systems.

Experience

Dr. Mojtaba Alirahmi has accumulated diverse research and professional experience through roles at globally recognized institutions. As a postdoctoral researcher, he worked on projects focused on carbon capture and transportation in biomass CHP plants, combining academic research with industrial applications. His international research internships at institutions such as MIT, the University of Pau, and the Technical University of Denmark allowed him to collaborate on projects in oxy-combustion, waste heat recovery, and offshore infrastructure repurposing. Earlier roles as a research assistant involved optimizing energy systems, developing sustainable fuel technologies, and advancing renewable integration strategies. Beyond academia, he has actively contributed to industry-related projects, providing practical insights into process optimization and techno-economic analysis. His professional journey reflects a consistent focus on interdisciplinary problem-solving, global collaboration, and the application of cutting-edge modeling tools. These experiences have shaped him into a researcher who not only advances scientific understanding but also delivers impactful solutions to energy challenges.

Research Interest

Dr. Mojtaba Alirahmi’s research interests lie at the intersection of renewable energy, optimization, and sustainable systems. His work explores energy storage technologies such as compressed air, hydrogen, and thermal storage, alongside Power-to-X pathways, including power-to-gas, power-to-liquid, and power-to-chemicals systems. He is deeply engaged in advancing renewable sources like wind, solar, biomass, and fuel cells, integrating them into efficient energy frameworks. His studies in thermodynamics and multi-objective optimization focus on improving energy, exergy, and economic performance, while also addressing environmental sustainability. He has shown strong interest in refrigeration and desalination cycles, including heat pumps, absorption chillers, reverse osmosis, and multi-effect distillation, linking them with broader energy strategies. Additionally, he is keen on techno-economic analysis, uncertainty management, and machine learning applications for energy systems. His research is driven by the vision of accelerating the transition toward clean and efficient energy solutions, positioning him at the forefront of global efforts in sustainable technology development.

Awards and Honors

Dr. Mojtaba Alirahmi has received multiple recognitions for his outstanding contributions to renewable energy research and process engineering. He has been acknowledged among the top global researchers in sustainable energy and mathematical optimization, underscoring his academic impact and leadership. His publications include several highly cited papers, with some ranked among the most influential works in the field of hydrogen and electrolyzers. His achievements also include conference best paper awards, travel grants for international scientific events, and recognition for the excellence of his master’s thesis. In addition to personal accolades, he has contributed as a reviewer for numerous international journals, further reflecting his influence on the scientific community. His consistent recognition demonstrates not only his academic productivity but also his innovation, collaboration, and impact on both research and practice. These honors highlight his role as a forward-thinking researcher whose contributions are shaping the advancement of clean energy systems worldwide.

Research Skills

Dr. Mojtaba Alirahmi possesses advanced research skills that span modeling, simulation, optimization, and experimental analysis. He is highly proficient in MATLAB, machine learning techniques, and multi-objective optimization algorithms such as NSGA-II, MOPSO, and MOGWO, which he applies to complex energy systems. His technical expertise extends to simulation platforms including Aspen HYSYS, TRNSYS, ANSYS, and COMSOL, allowing him to model and analyze a wide range of renewable and conventional processes. He has strong capabilities in thermo-economic assessment, dynamic process control, and uncertainty management, making his research both comprehensive and practical. Additionally, his proficiency with CAD software and scientific visualization tools supports his ability to design, simulate, and communicate results effectively. Beyond technical expertise, he demonstrates strong collaboration, leadership, and mentoring skills, contributing to both academic and industry projects. His ability to integrate theory with practice makes him a versatile researcher capable of advancing innovations in sustainable energy technologies.

Publication Top Notes

Title: Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy
Authors: SM Alirahmi, SR Dabbagh, P Ahmadi, S Wongwises
Year: 2020
Citations: 315

Title: Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems
Authors: SM Alirahmi, AR Razmi, A Arabkoohsar
Year: 2021
Citations: 275

Title: A comprehensive techno-economic analysis and multi-criteria optimization of a compressed air energy storage (CAES) hybridized with solar and desalination units
Authors: SM Alirahmi, SB Mousavi, AR Razmi, P Ahmadi
Year: 2021
Citations: 272

Title: A green hydrogen energy storage concept based on parabolic trough collector and proton exchange membrane electrolyzer/fuel cell: thermodynamic and exergoeconomic analyses
Authors: AR Razmi, SM Alirahmi, MH Nabat, E Assareh, M Shahbakhti
Year: 2022
Citations: 199

Title: Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater
Authors: SM Alirahmi, M Rostami, AH Farajollahi
Year: 2020
Citations: 165

Title: Green hydrogen & electricity production via geothermal-driven multi-generation system: Thermodynamic modeling and optimization
Authors: SM Alirahmi, E Assareh, NN Pourghassab, M Delpisheh, L Barelli, …
Year: 2022
Citations: 154

Title: Multi-objective optimization of a biomass gasification to generate electricity and desalinated water using Grey Wolf Optimizer and artificial neural network
Authors: F Musharavati, A Khoshnevisan, SM Alirahmi, P Ahmadi, …
Year: 2022
Citations: 152

Title: A Sustainable model for the integration of solar and geothermal energy boosted with thermoelectric generators (TEGs) for electricity, cooling and desalination purpose
Authors: E Assareh, SM Alirahmi, P Ahmadi
Year: 2021
Citations: 145

Title: Energy, exergy, and exergoeconomics (3E) analysis and multi-objective optimization of a multi-generation energy system for day and night time power generation-Case study …
Authors: SM Alirahmi, E Assareh
Year: 2020
Citations: 131

Title: Soft computing analysis of a compressed air energy storage and SOFC system via different artificial neural network architecture and tri-objective grey wolf optimization
Authors: SM Alirahmi, SF Mousavi, P Ahmadi, A Arabkoohsar
Year: 2021
Citations: 105

Conclusion

In conclusion, Dr. Mojtaba Alirahmi is a deserving candidate for the Best Researcher Award due to his groundbreaking contributions in renewable energy systems, optimization methods, and Power-to-X technologies. His strong publication record, global collaborations, and leadership in advancing sustainable solutions demonstrate his impact on both academic and industrial domains. With his dedication to innovation, mentorship, and cross-disciplinary research, he is well-positioned to drive future advancements in clean energy and inspire the next generation of researchers.

Shanling Zhang | Renewable Energy Systems | Best Researcher Award

Dr. Shanling Zhang | Renewable Energy Systems | Best Researcher Award

Jilin University | China

Shanling Zhang is an emerging researcher specializing in geological engineering and energy resource development, with a strong focus on methane hydrate extraction technologies. His research integrates both theoretical and experimental approaches to explore efficient methods of gas recovery from hydrate-bearing sediments. Through his work, he aims to address global energy demands while promoting environmentally sustainable extraction strategies. Zhang has contributed significantly to academic literature with multiple publications in high-impact journals, reflecting his ability to conduct innovative studies and collaborate across disciplines. His research outcomes demonstrate strong analytical thinking, problem-solving capabilities, and technical expertise in energy engineering. Recognized with national-level scholarships and academic honors, he has established himself as a dedicated and promising scientist. Zhang continues to combine academic rigor with practical applications, contributing to advancements in clean energy technology and positioning himself as a future leader in energy and geological research.

Professional Profiles

Scopus Profile | ORCID Profile 

Education

Shanling Zhang has pursued a progressive academic path that reflects his dedication to the energy and geological sciences. He completed his undergraduate degree in engineering at a leading Chinese university, where he gained strong fundamentals in applied sciences and energy systems. Building on this foundation, he advanced to graduate-level studies in energy and power engineering, focusing on methane hydrate extraction technologies and their potential applications in sustainable energy development. Currently, Zhang is engaged in doctoral research in geological engineering, where he deepens his exploration into advanced extraction methods for methane hydrates, with emphasis on simulation modeling, laboratory experimentation, and field application. His academic training has not only strengthened his subject expertise but also broadened his ability to conduct independent research, manage scientific projects, and collaborate in multidisciplinary teams. This educational background equips him with both theoretical knowledge and practical skills necessary to address complex challenges in energy engineering.

Experience

Shanling Zhang has accumulated valuable research experience through his active involvement in multiple scientific projects, including those supported by major national funding organizations. His contributions to studies on methane hydrate extraction involve numerical simulations, experimental setups, and kinetic mechanism analyses, all of which enhance the understanding of hydrate behaviors under varying environmental conditions. Zhang has participated in collaborative projects with supervisors and peers, demonstrating strong teamwork while also leading independent investigations. His experience includes authoring and co-authoring publications in reputed international journals, presenting advanced findings on hydrate extraction techniques, depressurization, and CO₂-CH₄ replacement processes. In addition to academic research, he has developed expertise in using specialized software for reservoir modeling and data interpretation, further strengthening his applied skills. His consistent involvement in cutting-edge research projects showcases his capability to manage complex technical tasks, contribute to scientific innovation, and remain actively engaged in advancing clean and efficient energy solutions.

Research Interest

Shanling Zhang’s research interests revolve around the exploration and development of methane hydrate resources as an alternative energy source. He is particularly focused on extraction methods that balance high recovery efficiency with environmental safety, such as CO₂ replacement techniques, depressurization methods, and thermal stimulation strategies. His investigations extend to the thermodynamic and kinetic mechanisms underlying hydrate formation and dissociation, with an emphasis on applying advanced simulation tools to model reservoir behaviors. Zhang is also deeply interested in the environmental aspects of methane hydrate recovery, seeking to reduce carbon emissions and mitigate ecological risks through innovative approaches. His interdisciplinary perspective connects geological engineering, energy technology, and environmental sustainability, positioning him at the forefront of research on future energy solutions. Ultimately, his research interests align with global efforts to develop clean, reliable, and economically viable energy alternatives that contribute to long-term resource security and climate-friendly technological advancements.

Awards and Honors

Shanling Zhang has earned multiple academic honors and scholarships that reflect his consistent excellence and dedication to scientific research. He has been awarded competitive national scholarships at both the master’s and doctoral levels, which recognize outstanding academic performance, research achievements, and leadership potential. His master’s thesis was recognized as an excellent contribution at the provincial level, highlighting the quality and originality of his research. Additionally, he has received institutional awards for being an outstanding graduate student and has secured first-class academic scholarships at the doctoral level. These honors demonstrate his capability to excel in competitive environments and affirm the value of his contributions to the field of energy engineering. His recognition extends beyond personal achievement, as his research outcomes have added to the broader scientific understanding of methane hydrate extraction. Collectively, these awards emphasize his strong academic standing and his potential to make lasting impacts in clean energy research.

Research Skills

Shanling Zhang has developed a comprehensive set of research skills that strengthen his contributions to the field of energy engineering. He is proficient in the use of advanced software tools such as CMG for reservoir modeling, Origin for data analysis, and various visualization and presentation platforms to communicate scientific findings effectively. His experimental skills include designing and conducting laboratory tests to investigate methane hydrate behaviors under controlled conditions, as well as analyzing the kinetics and thermodynamics of hydrate systems. He has strong scientific writing abilities, demonstrated through his multiple first-author publications in reputed international journals. Additionally, Zhang possesses effective problem-solving skills, teamwork experience, and the ability to conduct interdisciplinary research that bridges geological engineering, energy science, and environmental sustainability. His bilingual proficiency in English and Mandarin enables him to engage in international collaborations. These skills collectively position him as a capable researcher prepared to contribute meaningfully to global energy challenges.

Publication Top Notes

Title: Potassium acetate as an eco-friendly methane hydrate inhibitor: Implications for thermodynamics and kinetics
Authors: Shanling Zhang; Yating Huang; Yingrui Ma; Sheng Jiang; Shaoqi Yin; Xiuping Zhong; Chen Chen
Year: 2025
Journal: Chemical Engineering Journal

Title: Research progress on hydrate replacement mechanism and enhancement methods: A review
Authors: Shanling Zhang; Yingrui Ma; Yating Huang; Zhenhua Xu; Xiang Liu; Sheng Jiang; Xiaoxia You; Yafei Wang; Xiuping Zhong; Chen Chen
Year: 2025
Journal: Gas Science and Engineering

Title: Thermo-Hydro-Mechanical coupling analysis of spiral wellbores in horizontal wells for heat extraction from hot dry rock: A case study of the Gonghe Basin, Qinghai, China
Authors: Sheng Jiang; Chen Chen; Shanling Zhang; Zhenhua Xu; Xiang Liu; Guigang Tu; Songying Zhao
Year: 2025
Journal: Energy

Title: Current Status and Reflections on Ocean CO₂ Sequestration: A Review
Authors: Shanling Zhang; Sheng Jiang; Hongda Li; Peiran Li; Xiuping Zhong; Chen Chen; Guigang Tu; Xiang Liu; Zhenhua Xu
Year: 2025
Journal: Energies

Title: Study on the Characteristics of Gas Hydrate Replacement Extraction in Permafrost Regions
Authors: Shanling Zhang; Yingrui Ma; Sheng Jiang; Xin Li; Tengfei Cheng; Yafei Wang; Xuemin Zhang; Chen Chen
Year: 2025
Journal: Energy & Fuels

Title: Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO₂ replacement below freezing point
Authors: Xuemin Zhang; Shanling Zhang; Qingqing Liu; Tingting Huang; Huijie Yang; Jinping Li; Yingmei Wang; Qingbai Wu; Chen Chen
Year: 2024
Journal: Energy

Title: Experimental study on mechanical damage and creep characteristics of Gonghe granite under real-time high temperature
Authors: Zhenhua Xu; Xiuping Zhong; Shanling Zhang; Yafei Wang; Kunyan Liu; Xiang Liu; Yuxuan Meng; Xinglan Hou; Chen Chen
Year: 2024
Journal: Geothermics

Conclusion

Shanling Zhang demonstrates strong potential as a young researcher, with an impressive record of publications, national-level project contributions, and recognition through competitive scholarships. His work on methane hydrate extraction technologies addresses a vital energy and environmental challenge, showcasing both technical depth and societal relevance. With his proven academic excellence, growing international research presence, and commitment to innovation, Zhang is a deserving candidate for the Best Researcher Award, with the promise to contribute significantly to both scientific advancement and sustainable energy solutions in the years ahead.

Vivek Garg | Waste-to-Energy Conversion | Best Researcher Award

Dr. Vivek Garg | Waste-to-Energy Conversion | Best Researcher Award

Senior Lecturer and Applied Engineering Research Specialist at University of Greenwich | United Kingdom

Dr. Vivek Garg is an accomplished researcher and technical leader specializing in powder technology, bulk solids handling, mineral processing, and formulation science. Currently serving as a Senior Lecturer and Applied Engineering Research Specialist at the University of Greenwich, he leads interdisciplinary projects across the pharmaceutical, food, chemical, and environmental sectors. His expertise lies in bridging the gap between academic research and industrial application, delivering scalable solutions for formulation design, process optimization, and test method development. He has successfully secured competitive research funding and major consultancy projects, demonstrating his ability to attract resources and deliver measurable impact. His scholarly contributions include research publications in reputed international journals, patents in advanced systems and technologies, and book chapters addressing innovative engineering solutions. Widely recognized for his innovation and leadership, Dr. Garg actively contributes to scientific communities through invited talks, technical committees, and journal reviewing, while mentoring early-career researchers.

Professional Profile 

Google Scholar | Scopus Profile | ORCID Profile 

Education

Dr. Vivek Garg’s academic journey reflects a strong foundation in engineering and applied sciences. He earned his Ph.D. in Bulk Solids and Handling from the University of Greenwich, where his research focused on powder flow properties and their implications in industrial applications. Prior to that, he completed his Master’s degree in Thermal Engineering from Thapar University, where he expanded his expertise in advanced mechanical processes and energy systems. He began his academic pursuit with a Bachelor of Technology in Mechanical Engineering from IET Bhaddal, India, where he built the fundamental skills that would later shape his career as a researcher. Throughout his education, Dr. Garg has combined theoretical knowledge with practical experimentation, contributing to his expertise in formulation, process optimization, and sustainable solids handling. His academic achievements have been complemented by his strong engagement with industrial projects, enabling him to integrate academic learning with practical engineering challenges.

Experience

Dr. Vivek Garg brings over a decade of professional and research experience in powder technology, formulation science, and mineral processing. At the University of Greenwich, he has worked as a Senior Lecturer and Applied Engineering Research Specialist, where he has led industry-oriented R&D and consultancy projects, developed laboratory rigs for powder characterization, and guided students and researchers. His work spans diverse sectors including pharmaceuticals, food, chemicals, and environmental systems, focusing on developing innovative methods for powder flow measurement, material characterization, and process optimization. Earlier in his career, he contributed to engineering roles in leading industries such as Federal Mogul Goetze and Bhushan Power and Steel, where he provided solutions that improved efficiency and reduced operational costs. Through his consultancy and collaborative projects, he has partnered with global industries and academic institutions, successfully translating research outcomes into practical solutions. His leadership in project execution demonstrates his ability to deliver high-impact results.

Research Interest

Dr. Vivek Garg’s research interests lie in the study and advancement of powder technology and bulk solids handling, with applications across pharmaceutical, food, and chemical industries. He focuses on powder formulation and characterization, including flowability, compressibility, segregation, and caking, which are crucial factors in ensuring product quality and process efficiency. He also explores advanced topics such as air permeability, fluidization behavior, and the development of lab-to-full scale rigs for material characterization. In addition, his work in additive manufacturing, particularly 3D tablet printing, highlights his interest in combining pharmaceutical innovation with engineering design. He is equally committed to exploring sustainable solids handling, addressing industrial challenges in waste processing and renewable material applications. His approach integrates experimental methods, material science, and computational modeling to develop innovative solutions that bridge scientific research with industrial needs. By pursuing these areas, Dr. Garg aims to strengthen global research and innovation in material science and engineering.

Awards and Honors

Dr. Vivek Garg has been widely recognized for his contributions to engineering research and innovation through multiple prestigious awards. He has received distinctions for innovation in powder technology, materials handling, and applied research, demonstrating his ability to deliver high-impact solutions that bridge academia and industry. His recognition includes awards celebrating rising talent, newcomer contributions, and international excellence in young research, highlighting both his early promise and continued professional success. Beyond institutional awards, Dr. Garg has earned accolades from professional associations and industrial organizations, affirming the global relevance of his work. These honors reflect his ability to consistently push the boundaries of powder technology and applied engineering. His leadership in winning competitive research grants, along with contributions to interdisciplinary collaborations, further validates his achievements. Collectively, these recognitions underscore his growing influence in his field and affirm his position as a researcher of international distinction, committed to advancing science and innovation.

Research Skills

Dr. Vivek Garg has developed a strong portfolio of research skills that combine experimental expertise, analytical rigor, and project leadership. He is highly skilled in powder characterization techniques such as particle size analysis, powder flow testing, air permeability, and compressibility studies, supported by tools including DVS, SEM, ImageJ, and pycnometers. He has experience in developing bespoke laboratory rigs and smart test facilities that enable real-time monitoring of powder behavior, a key contribution to both academic research and industrial applications. In addition, his knowledge extends to design software such as SolidWorks and simulation approaches that integrate characterization techniques into virtual toolkits. He has also gained expertise in project management, having secured competitive funding, managed budgets, and led multi-disciplinary research teams. His ability to translate experimental insights into industrial solutions demonstrates both technical competence and applied innovation. These skills, combined with strong stakeholder engagement, make him a versatile and impactful researcher.

Publication Top Notes

Title: An investigation into the flowability of fine powders used in pharmaceutical industries
Authors: V. Garg, S.S. Mallick, P. García-Trinanes, R.J. Berry
Year: 2018
Citations: 93

Title: An experimental investigation on the effect of particle size into the flowability of fly ash
Authors: L. Rohilla, V. Garg, S.S. Mallick, G. Setia
Year: 2018
Citations: 32

Title: An experimental study on free-surface rolling segregation and correlations with angle of repose and particle sphericity
Authors: T. Deng, V. Garg, H. Salehi, M.S.A. Bradley
Year: 2020
Citations: 25

Title: A study of particle adhesion for cohesive powders using a novel mechanical surface energy tester
Authors: T. Deng, V. Garg, M.S.A. Bradley
Year: 2021
Citations: 19

Title: 3D Printing of Personalised Carvedilol Tablets Using Selective Laser Sintering
Authors: A.G. Tabriz, Q. Gonot-Munck, A. Baudoux, V. Garg, R. Farnish, O. Katsamenis, et al.
Year: 2023
Citations: 18

Title: Comparative studies of powder flow predictions using milligrams of powder for identifying powder flow issues
Authors: T. Deng, V. Garg, L.P. Diaz, D. Markl, C. Brown, A. Florence, M.S.A. Bradley
Year: 2022
Citations: 18

Title: Correlations between segregation intensity and material properties such as particle sizes and adhesions and novel methods for assessment
Authors: T. Deng, V. Garg, H. Salehi, M.S.A. Bradley
Year: 2021
Citations: 18

Title: A new method for assessing powder flowability based on physical properties and cohesiveness of particles using a small quantity of samples
Authors: V. Garg, T. Deng, M. Bradley
Year: 2022
Citations: 12

Title: Optimising Spread-Layer Quality in Powder Additive Manufacturing: Assessing Packing Fraction and Segregation Tendency
Authors: H. Salehi, J. Cummins, E. Gallino, V. Garg, T. Deng, A. Hassanpour, et al.
Year: 2023
Citations: 8

Title: Electrostatic Charging of Fine Powders and Assessment of Charge Polarity Using an Inductive Charge Sensor
Authors: T. Deng, V. Garg, M. Bradley
Year: 2023
Citations: 8

Conclusion

In summary, Dr. Vivek Garg exemplifies the qualities of an outstanding researcher through his pioneering contributions in powder technology, interdisciplinary research leadership, and impactful industrial collaborations. His scholarly output, patents, and recognition through awards such as the Best Innovation Award and the Rising Star Award reflect his dedication to advancing both scientific knowledge and industrial practices. With his proven track record of innovation, community engagement, and future-oriented research in sustainable solids handling and pharmaceutical technologies, Dr. Garg is highly deserving of the Best Researcher Award. His potential for continued leadership and global research impact positions him as an emerging leader in engineering science and applied technology.